Cellular and Molecular Neurobiology

, Volume 14, Issue 5, pp 507–521

The application of antisense oligonucleotide technology to the brain: Some pitfalls

  • B. J. Chiasson
  • J. N. Armstrong
  • M. L. Hooper
  • P. R. Murphy
  • H. A. Robertson


1. Amphetamine-induced c-fos andegr-1 expression in the striatum was used as a model in which to study the effects of antisense oligodeoxynucleotides (ODNs) directed at c-fos. Using direct infusions of ODNs into the striata of animals we have demonstrated that c-fos antisense ODNs retain most of their biological activity with 2- or 3-base substitutions. The c-fos antisense and mismatch ODNs attenuated Fos immunoreactivity but had little effect on Egr-1 immunoreactivity.

2. In another group of studies examining the role of c-fos in amygdala kindling, we have demonstrated that ODNs cause neurotoxic damage following repeated daily infusions into the amygdala. The damage observed was greatly diminished when the time interval between infusions was extended.

Key words

c-fos egr-1 antisense oligodeoxynucleotides (ODNs) amygdala kindling immediate-early genes ODN-induced toxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool.J. Mol. Biol. 215403–410.PubMedGoogle Scholar
  2. Campbell, J. M., Bacon, T. A., and Wickstrom, E. (1990). Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid.J. Biochem. Biophys. Meth. 20259–267.PubMedGoogle Scholar
  3. Chiang, M.-Y., Chan, H., Zounes, M. A., Freier, S. M., Lima, W. F., and Bennett, C. F. (1991). Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms.J. Biol. Chem. 26618162–18171.PubMedGoogle Scholar
  4. Chiasson, B. J., and Robertson, H. A. (1994). Toxicity following in vivo infusion of antisense oligonucleotide: Role of the inter-infusion interval.Soc. Neurosci. Abstr. (in press).Google Scholar
  5. Chiasson, B. J., Hooper, M. L., and Robertson, H. A. (1992a). Amphetamine induced rotational behavior in non-lesioned rats: A role for c-fos expression in the striatum.Soc. Neurosci. Abstr. 18562.Google Scholar
  6. Chiasson, B. J., Hooper, M. L., Murphy, P. R., and Robertson, H. A. (1992b). Antisense oligonucleotide eliminatesin vivo expression of c-fos in mammalian brain.Eur. J. Mol. Pharmacol. 227451–453.Google Scholar
  7. Chiasson, B. J., Dennison, Z., and Robertson, H. A. (1995). Amygdala kindling and immediate-early genesMol. Brain. Res. (in press).Google Scholar
  8. Cooney, M., Czernuszewick, G., Postel, E. H., Plint, S. J., and Hogan, M. E. (1988). Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro.Science 241456–459.PubMedGoogle Scholar
  9. Dragunow, M., and Robertson, H. A. (1987). Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus.Nature 329441–442.PubMedGoogle Scholar
  10. Dragunow, M., Robertson, H. A., and Robertson, G. S. (1988). Effects of kindled seizures on the induction of c-fos protein(s) in mammalian neurons.Exp. Neurol. 102261–263.PubMedGoogle Scholar
  11. Dragunow, M., Lawlor, P., Chiasson, B. J., and Robertson, H. A. (1993). C-fos antisense generates apomorphine and amphetamine induced rotation.Neuroreport 5305–306.PubMedGoogle Scholar
  12. Gao, W.-Y., Hand, F.-S., Storm, C., Egan, W., and Cheng, Y.-C. (1991). Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: Implications for antisense technology.Mol. Pharmacol. 41223–229.Google Scholar
  13. Goddard, G. V., McIntyre, D., and Leech, C. (1969). A permanent change in brain function resulting from daily electrical stimulation.Exp. Neurol. 25295–330.PubMedGoogle Scholar
  14. Hooper, M. L., Chiasson, B. J., and Robertson, H. A. (1994). Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of Fos and produces a beharioral effect.Neurosci. 63917–924.Google Scholar
  15. Koelle, C. G., and Friedenwald, J. S. (1949). A histochemical method for localizing cholinesterase activity.Proc. Soc. Exp. Biol. Med. 70617–622.Google Scholar
  16. Kreig, A. M. (1993). Uptake and efficacy of phosphodiester and modified antisense oligonucleotides in primary cell cultures.Clin. Chem. 39 710–712.Google Scholar
  17. Krieg, A. M., Tonkinson, J., Matson, S., Zhao, Q., Saxon, M., Zhang, L.-M., Bhanja, U., Yakubov, L., and Stein, C. A. (1993). Modification of antisense phosphodiester oligodeoxynucleotides by a 5′ cholesteryl moiety increases cellular association and improves efficacy.Proc. Natl. Acad. Sci. USA 901048–1052.PubMedGoogle Scholar
  18. Lewis, P. R. (1961). The effect of varying the conditions in the Koelle method.Biblthca. Anat. Vol. 2, Karger, Basel, pp. 11–20.Google Scholar
  19. Molino, A., and McIntyre, D. C. (1972). Another inexpensive headplug for the electrical recording and/or stimulation of rats.Physiol. Behav. 9273–275.PubMedGoogle Scholar
  20. Morgan, J. I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenesfos andjun.Annu. Rev. Neurosci. 14421–451.PubMedGoogle Scholar
  21. Nadler, J. V., and Evenson, D. A. (1983). Use of excitatory amino acids to make axon-sparing lesions of hypothalamus.Methods Enzymol. 103393–400.PubMedGoogle Scholar
  22. Perez, J. R., Li, Y., Stein, C. A., Majumder, S., van Oorschot, A., and Narayanan, R. (1994). Sequence-independent induction of Sp 1 transcription factor activity by phosphorothioate oligonucleotides.Proc. Natl. Acad. Sci. USA 915959–5961.Google Scholar
  23. Robertson, G. S., and Robertson, H. A. (1989). Evidence that L-dopa-induced rotational behavior is dependent on both striatal and nigral mechanisms.J. Neurosci. 93326–3331.PubMedGoogle Scholar
  24. Robertson, H. A. (1992). Immediate-early genes, neuronal plasticity, and memory.Biochem. Cell Biol. 70729–737.PubMedGoogle Scholar
  25. Robertson, H. A., Peterson, M. R., Murphy, K., and Robertson, G. S. (1989). D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour.Brain Res. 503346–349.PubMedGoogle Scholar
  26. Standifer, K. M., Chien, G.-C., Wahlestedt, C., Brown, G. P., and Pasternak, G. W. (1994). Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor.Neuron 12805–810.PubMedGoogle Scholar
  27. Stein, C. A., and Cheng, Y.-C. (1993). Antisense oligonucleotides as therapeutic agents—Is the bullet really magical?Science 261 1004–1012.PubMedGoogle Scholar
  28. Stein, C. A., and Cohen, J. S. (1988). Oligonucleotides as inhibitors of gene expression: A review.Cancer Res. 482659–2668.PubMedGoogle Scholar
  29. Stein, C. A., Subasinghe, C., Shinozuka, K., and Cohen, J. S. (1988). Physicochemical properties of phosphorothioate oligodeoxynucleotides.Nucl. Acids Res. 163209–3221.PubMedGoogle Scholar
  30. Stull, R. A., Taylor, L. A., and Szoka, J. C., Jr. (1992). Predicting antisense oligonucleotide inhibitory efficacy: A computational approach using histograms and thermodynamic indices.Nucl. Acids. Res. 203501–3508.PubMedGoogle Scholar
  31. Ungerstedt, U. (1971). Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system.Acta. Physiol Scand. (Suppl.) 36769–93.Google Scholar
  32. Wahlestedt, C. (1994). Antisense oligonucleotide strategies in neuropharmacology.Trends Pharmacol. Sci. 1542–46.PubMedGoogle Scholar
  33. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C. E., and Reis, D. J. (1993a). Antisense oligonucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions.Nature 363260–263.PubMedGoogle Scholar
  34. Wahlestedt, C., Pich, E. M., Koob, G. F., Yee, F., and Heilig, M. (1993b). Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides.Science 259528–531.PubMedGoogle Scholar
  35. Woolf, T. M., Jennings, G. B., Rebagliati, M., and Melton, D. A. (1990). The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos.Nucl. Acids Res. 181763–1769.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • B. J. Chiasson
    • 1
  • J. N. Armstrong
    • 1
    • 2
  • M. L. Hooper
    • 1
  • P. R. Murphy
    • 3
  • H. A. Robertson
    • 1
  1. 1.Laboratory of Molecular Neurobiology, Department of PharmacologyDalhousie UniversityHalifaxCanada
  2. 2.Department of Anatomy and NeurobiologyDalhousie UniversityHalifaxCanada
  3. 3.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada

Personalised recommendations