Cellular and Molecular Neurobiology

, Volume 14, Issue 6, pp 791–808 | Cite as

Studies of aluminum neurobehavioral toxicity in the intact mammal

  • Robert A. Yokel
  • David D. Allen
  • Jerome J. Meyer
Article

Summary

1. Aluminum (Al) has been implicated in neurotoxic syndromes in several conditions, including Alzheimer's disease (AD). The developmental stage of the mammalian brain most susceptible to Al was determined in rabbits systemically exposed to Al during the prenatal, postnatal, or second month or for 1 month as adults or as aged subjects. Eyeblink reflex classical conditioning showed an Al-induced learning deficit only in the adult and aged rabbits.

2. 4-Aminopyridine, which was reported to improve learning in AD subjects, attenuated this Al-induced learning deficit.

3. Conditioned eyeblink acquisition is slower in AD subjects than controls, supporting the Al-loaded rabbit as a model of some AD effects.

4. To determine if the Al-loaded rabbit modeled the AD cholinergic deficit, acetylcholine (Ach) overflow was measured in rabbit hippocampus using microdialysis. Aluminum pretreatment reduced basal and potassium-stimulated Ach overflow compared to controls.

5. Acetylcholine overflow increased as control rabbits acquired the conditioned eyeblink reflex, then subsequently decreased, although conditioned eyeblink performance continued. In contrast, Al-loaded rabbits showed a delay in conditioned eyeblink acquisition and greatly attenuated Ach overflow. The Al-induced attenuation of Ach overflow may contribute to the Al-induced learning deficit.

6. Brain Al entry was studied using microdialysis of blood, brain, and lateral ventricle. Aluminum rapidly entered the brain and lateral ventricle. Frontal cortical Al was greater than lateral ventricular Al, suggesting that Al primarily enters the brain through the cerebral microvasculature.

7. The brain/blood Al ratio was always significantly less than 1. This ratio was influenced by the Al form administered, brain site and animal species. Thus, there appears to be an active process moving Al out of brain extracellular fluid (ECF).

8. Brain and blood dialysate Ach concentrations were not different after cyanide addition to the dialysate, supporting the conclusion that an active process moves Al out of brain ECF.

Key words

acetylcholine aluminum blood-brain barrier classical conditioning learning microdialysis rabbit rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfrey, A. C., LeGendre, G. R., and Kaehny, W. D. (1976). The dialysis encephalopathy syndrome.N. Engl. J. Med. 294:184–188.Google Scholar
  2. Alfrey, A. C., Hegg, A., and Craswell, P. (1980). Metabolism and toxicity of aluminum in renal failure.Am. J. Clin. Nutr. 33:1509–1516.Google Scholar
  3. Allen, D. D., and Yokel, R. A. (1992). Dissimilar aluminum and gallium permeation of the blood-brain barrier demonstrated by in vivo microdialysis.J. Neurochem. 58:903–908.Google Scholar
  4. Allen, D. D., Orvig, C., and Yokel, R. A. (1994). Pharmacokinetics and distribution of tris(maltolato) aluminum(III) into the central nervous system.Neuro Toxicology 15:371–378.Google Scholar
  5. Allen, D. D., Orvig, C., and Yokel, R. A. Evidence for energy-dependent transport of aluminum out of brain extracellular fluid.Neuro Toxicology (in press).Google Scholar
  6. Barnes, N. M., Costall, B., Fell, A. F., and Naylor, R. J. (1987). An HPLC assay procedure of sensitivity and stability for measurement of acetylcholine and choline in neuronal tissue.Pharm. Pharmacol. 39:727–731.Google Scholar
  7. Beal, M. F., Mazurek, M. F., Ellison, D. W., Kowall, N. W., Solomon, P. R., and Pendlebury, W. W. (1989). Neurochemical characteristics of aluminum-induced neurofibrillary degeneration in rabbits.Neuroscience 29:339–346.Google Scholar
  8. Benveniste, E., and Hüttemeier, P. C. (1990). Microdialysis-theory and application.Prog. Neurobiol. 35:195–215.Google Scholar
  9. Collingridge, G. L. (1985). Long-term potentiation in the hippocampus: Mechanisms of initiation and modulation by neurotransmitters.Trends Neurosci. 6:407–411.Google Scholar
  10. Crapper, D. R., and Dalton, A. J. (1973). Alterations in short-term retention, conditioned avoidance response acquisition and motivation following aluminum induced neurofibrillary degeneration.Physiol. Behav. 10:925–933.Google Scholar
  11. DeBoni, U., Otvos, A., Scott, J. W., and Crapper, D. R. (1976). Neurofibrillary degeneration induced by systemic aluminum.Acta Neuropathol. 35:285–294.Google Scholar
  12. Döllken, A. (1987). Über die Wirkung des Aluminum unter besorderer Berucksichtigung der durch das Aluminum Resursachten Lasionen in Zental Nervensystem.Arch. Exp. Pathol. Pharmakol. 40:58–120.Google Scholar
  13. Finnegan, M. M., Rettig, S. J., and Orvig, C. (1986). A neutral water-soluble aluminum complex of neurological interest.J. Am. Chem. Soc. 108:5033–5035.Google Scholar
  14. Gormezano, I. (1966). Classical conditioning. InExperimental Methods and Instrumentation in Psychology (J. B. Sidowski, Ed.), McGraw-Hill, New York, pp. 385–420.Google Scholar
  15. Hofstetter, J. R., Vincent, I., Bugiani, O., Ghetti, B., and Richter, J. A. (1987). Aluminum-induced decreases in choline acetyltransferase, tryosine hydroxylase, and glutamate decarboxylase in selected regions of rabbit brain.Neurochem. Pathol. 6:177–193.Google Scholar
  16. King, G. A., De Boni, U., and Crapper, D. R. (1975). Effect of aluminum upon conditioned avoidance response acquisition in the absence of neurofibrillary degeneration.Pharmacol. Biochem. Behav. 3:1003–1009.Google Scholar
  17. Klatzo, I., Wiśniewski, H., and Streicher, E. (1965). Experimental production of neurofibrillary degeneration. 1. Light microscopic observations.J. Neuropathol. Exp. Neurol. 24:187–199.Google Scholar
  18. Lai, J. C. K., Guest, J. F., Leung, T. K. C., Lim, L., and Davison, A. N. (1980). The effects of cadmium, manganese and aluminium on sodium-potassium-activated and magnesium-activated adenosine triphosphatase activity and choline uptake in rat brain synaptosomes.Biochem. Pharmacol. 29:141–146.Google Scholar
  19. Lavond, D. G., Kim, J. J., and Thompson, R. F. (1993). Mammalian brain substrates of aversive classical conditioning.Annu. Rev. Psychol. 44:317–342.Google Scholar
  20. Lovell, M. A., Ehmann, W. D., and Markesbery, W. R. (1993). Laser microprobe analysis of brain aluminum in Alzheimer's disease.Ann. Neurol. 33:36–42.Google Scholar
  21. Mamounas, L. A., Thompson, R. F., Lynch, G., and Baudry, M. (1984). Classical conditioning of the rabbit eyeblink response increases glutamate receptor binding in hippocampal synaptic membranes.Proc. Natl. Acad. Sci. 81:2548–2552.Google Scholar
  22. McLaughlin, A. I. G., Kazantzis, G., King, E., Teare, D., Porter, R. J., and Owen, R. (1962). Pulmonary fibrosis and encephalopathy associated with the inhalation of aluminium dust.Br. J. Ind. Med. 19:253–263.Google Scholar
  23. Nelson, W. O., Karpishin, T. B., Rettig, S. J., and Orvig, C. (1988). Aluminum and gallium compounds of 3-hydroxy-4-pyridinones: Synthesis, characterization, and crystallography of biologically active complexes with unusual hydrogen bonding.Inorg. Chem. 27:1045–1051.Google Scholar
  24. Nordberg, A. (1992). Biological markers and the cholinergic hypothesis in Alzheimer's disease.Acta Neurol. Scand. Suppl. 139:54–58.Google Scholar
  25. Petit, T. L., Biederman, G. B., and McMullen, P. A. (1980). Neurofibrillary degeneration, dendritic dying back and learning-memory deficits after aluminum administration: Implications for brain aging.Exp. Neurol. 67:152–162.Google Scholar
  26. Petit, T. L., Biederman, G. B., Jonas, P., and LeBoutillier, J. C. (1985). Neurobehavioral development following aluminum administration in infant rabbits.Exp. Neurol. 88:640–651.Google Scholar
  27. Rabe, A., Moon, H. L., Shek, J., and Wisniewski, H. M. (1982). Learning deficit in immature rabbits with aluminum-induced neurofibrillary changes.Exp. Neurol. 76:441–446.Google Scholar
  28. Rifat, S. L., Eastwood, M. R., Crapper Mclachlan, D. R., and Corey, P. N. (1990). Effect of exposure of miners to aluminium powder.Lancet 336:1162–1165.Google Scholar
  29. Sideman, S., and Manor, D. (1982). The dialysis dementia syndrome and aluminum intoxication.Nephron 31:1–10.Google Scholar
  30. Sjögren, B., Gustavsson, P., and Hogstedt, C. (1990). Neuropsychiatric symptoms among welders exposed to neurotoxic metals.Br. J. Ind. Med. 47:704–707.Google Scholar
  31. Solomon, P. R., Solomon, S. D., Vander Schaaf, E., and Perry, H. E. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure.Science 220:329–330.Google Scholar
  32. Solomon, P. R., Levine, E., Bein, T., and Pendlebury, W. W. (1991). Disruption of classical conditioning in patients with Alzheimer's disease.Neurobiol. Aging 12:283–287.Google Scholar
  33. Spofforth, J. (1921). Case of aluminium poisoning.Lancet 1:1301.Google Scholar
  34. Thompson, R. F., Berger, T. W., Berry, S. D., Hoehler, F. K., Kettner, R. E., and Weisz, D. J. (1980). Hippocampal substrate of classical conditioning.Physiol. Psychol. 8:262–279.Google Scholar
  35. Wesseling, H., Agoston, S., VanDam, G. B. P., Pasma, J., DeWit, D. J., and Havinga, H. (1984). Effects of 4-aminopyridine in elderly patients with Alzheimer's disease.N. Engl. J. Med. 310:988–989.Google Scholar
  36. White, D. M., Longstreth, W. T., Rosenstock, L., Claypoole, K. H. J., Brodkin, C. A., and Townes, B. D. (1992). Neurologic syndrome in 25 workers from an aluminum smelting plant.Arch. Intern. Med. 152:1443–1448.Google Scholar
  37. Wisniewski, H., Narkiewicz, O., and Wisniewska, K. (1967). Topography and dynamcis of neurofibrillary degeneration in aluminum encephalopathy.Acta Neuropathol. 9:127–133.Google Scholar
  38. Wisniewski, H. M., Sturman, J. A., and Shek, J. W. (1980). Aluminum chloride induced neurofibrillary changes in the developing rabbit: A chronic animal model.Ann. Neurol. 8:479–490.Google Scholar
  39. Woodruff-Pak, D. S. (1988). Aging and classical conditioning: Parallel studies in rabbits and humans.Neurobiol. Aging 9:511–522.Google Scholar
  40. Woodruff-Pak, D. S., Finkbiner, R. G., and Sasse, D. K. (1990). Eyeblink conditioning discriminates Alzheimer's patients from non-demented aged.NeuroReport 1:45–48.Google Scholar
  41. Yasui, M., Yase, Y., Ota, K., and Garruto, R. M. (1991). Aluminum deposition in the central nervous system of patients with amyotrophic lateral sclerosis from the Kii peninsula of Japan.NeuroToxicology 12:615–620.Google Scholar
  42. Yokel, R. A. (1983a). Persistent aluminum accumulation after prolonged systemic aluminum exposure.Biol. Tr. Elem. Res. 5:467–474.Google Scholar
  43. Yokel, R. A. (1983b). Repeated systemic aluminum exposure effects on classical conditioning of the rabbit.Neurobehav. Toxicol. Teratol. 5:41–46.Google Scholar
  44. Yokel, R. A. (1985). Toxicity of gestational aluminum exposure to the maternal rabbit and offspring.Toxicol. Appl. Pharmacol. 79:121–133.Google Scholar
  45. Yokel, R. A. (1987). Toxicity of aluminum exposure to the neonatal and immature rabbit.Fund Appl. Toxicol. 9:795–806.Google Scholar
  46. Yokel, R. A. (1989). Aluminum produces age related behavioral toxicity in the rabbit.Neurotoxicol. Teratol. 11:237–242.Google Scholar
  47. Yokel, R. A., Lidums, V., Mcnamara, P. J., and Ungerstedt, U. (1991). Aluminum distribution into brain and liver of rats and rabbits following intravenous aluminum lactate or citrate: A microdialysis study.Toxicol. Appl. Pharmacol. 107:153–163.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Robert A. Yokel
    • 1
    • 2
  • David D. Allen
    • 1
  • Jerome J. Meyer
    • 1
  1. 1.Division of Pharmacology & Experimental Therapeutics, College of PharmacyUniversity of KentuckyLexington
  2. 2.Graduate Center for ToxicologyUniversity of KentuckyLexington

Personalised recommendations