Mathematical systems theory

, Volume 22, Issue 1, pp 109–148 | Cite as

Reduced-order controllers inH-Optimal synthesis methods of the first kind

  • Madanpal S. Verma
  • James C. Romig
Article

Abstract

It has often been believed that inH-optimal synthesis methods, the resulting controllers have order much greater than the order of the plant. Recently, Limebeer and Hung [9] have shown that inH-optimal synthesis problems of the “first kind” both optimal as well as suboptimal controllers have order which is no greater than the order of the plant. However, those authors do not provide any explicit algorithm for computing these controllers. In this paper we derive an explicit procedure for computing suboptimal controllers in problems of the first kind. These controllers have order no greater than the order of the plant and can be computed by solving only two Riccati and two Lyapunov equations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Ball and A. C. M. Ran, Optimal Hankel Norm Model Reductions and Wiener-Hopf Factorization I: The Canonical Case,SIAM J. Control Optim.,25, 362–382, March 1987.Google Scholar
  2. [2]
    J. A. Ball and A. C. M. Ran, Optimal Hankel Norm Model Reductions and Wiener-Hopf Factorization II: The Non-Canonical Case,Integral Equations Operator Theory, 416–436, May 1987.Google Scholar
  3. [3]
    C. T. Chen,Linear System Theory and Design, Holt, Rinehart and Winston, New York, 1984.Google Scholar
  4. [4]
    C. A. Desoer, R. W. Liu, J. Murray, and R. Saeks, Feedback System Design: The Fractional Representation Approach to Analysis and Synthesis,IEEE Trans. Automat. Control,25, 399–412, 1980.Google Scholar
  5. [5]
    J. Doyleet al., Advances in Multivariable Control, ONR/Honeywell Workshop, 1984.Google Scholar
  6. [6]
    B. A. Francis,A Course in H Control Theory, Springer-Verlag, New York, 1987.Google Scholar
  7. [7]
    B. A. Francis, J. W. Helton, and G. Zames,H Optimal Feedback Controllers for Linear Multivariate Systems,IEEE Trans. Automat. Control,29, 888–900, 1984.Google Scholar
  8. [8]
    K. Glover, All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and TheirL -error Bounds,Internat. J. Control,39, 1115–1193, 1984.Google Scholar
  9. [9]
    D. J. N. Limebeer and Y. S. Hung, An Analysis of the Pole-Zero Cancellations inH Optimal Control Problems of the First Kind,SIAM J. Control Optim.,25, 1457–1493, November 1987.Google Scholar
  10. [10]
    Z. Nehari, On Bounded Bilinear Forms,Ann. of Math. 65, 153–162, 1957.Google Scholar
  11. [11]
    C. N. Nett, C. A. Jacobson, and M. J. Balas, A Connection Between State-Space and Doubly Coprime Fractional Representations,IEEE Trans. Automat. Control,29, 831–832, 1984.Google Scholar
  12. [12]
    H. H. Rosenbrock,State-Space and Multivariable Theory, Wiley, New York, 1970.Google Scholar
  13. [13]
    M. G. Safonov and M. S. Verma,L -Sensitivity Optimization and Hankel Approximation,IEEE Trans. Automat. Control,30, 279–280, 1985.Google Scholar
  14. [14]
    M. G. Safonov, E. A. Jonckheere, M. S. Verma, and D. J. N. Limebeer, Synthesis of Positive Real Multivariable Feedback Systems,Internat. J. Control,45, 817–842, 1987.Google Scholar
  15. [15]
    D. C. Youla, H. Jabr, and J. J. Bongiorno, Modern Wiener-Hopf Design of Optimal Controllers, Part II: The Multivariable Case,IEEE Trans. Automat. Control,21, 319–338, 1976.Google Scholar
  16. [16]
    G. Zames, Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses,IEEE Trans. Automat. Control,26, 301–320, 1981.Google Scholar
  17. [17]
    G. Zames and B. A. Francis, Feedback, Minimax Sensitivity, and Optimal Robustness,IEEE Trans. Automat. Control,28, 585–601, 1983.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Madanpal S. Verma
    • 1
  • James C. Romig
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations