Journal of Scientific Computing

, Volume 10, Issue 1, pp 151–180 | Cite as

The structure and the small-scale intermittency of passive scalars in homogeneous turbulence

  • R. S. Miller
  • F. A. Jaberi
  • C. K. Madnia
  • P. Givi


Results generated by direct numerical simulations (DNS) are used to study the structure and the small-scale intermittency of a passive scalar contaminant in a homogeneous turbulent shear flow. Simulations are conducted of flows with and without a constant mean scalar gradient. In all cases, the probability density functions (PDFs) of the scalars adopt an approximate gaussian distribution at the final stages of mixing. In the presence of the mean gradient, the scalar fields yield a nearly identical asymptotic state independent of initial conditions. In these cases, the gradient of the fluctuating scalar field shows preferred directions of orientation with respect to the strain eigenvectors; and the mean transverse velocity conditioned on the scalar is linear. These fields also portray increased flatness and skewness of the scalar-difference field as the separation distance becomes small. Larger than gaussian tails are observed in the PDF of both the velocity- and the scalar-derivatives, and the intermittency of the scalar derivative is shown to be more pronounced in the presence of the mean scalar gradient. Conditional averages of the angle between the scalar gradient and the strain eigenvectors suggest that the scalar field may be viewed as a random gaussian background field superimposed with sporadic scalar structures which are responsible for intermittency. With this view, a Langevin transport equation is proposed for the mapping of the scalar derivative PDF from a gaussian reference field. This is done in the context of the “two-fluid” model of She (1990). With this model, the PDF of the scalar dissipation is produced and the results are compared with DNS data.

Key words

Scalar intermittency homogeneous turbulence direct numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, L. C. and Shivamoggi, B. K. (1990). The gamma distribution as a model for temperature dissipation in intermittent turbulence.Phys. Fluids A 2, 105–110.Google Scholar
  2. Andrews, L. C., Phillips, R. L., Shivamoggi, B. K., and Beck, J. K. (1989). A statistical theory for the distribution of energy dissipation in intermittent turbulence.Phys. Fluids A 1, 999–1006.Google Scholar
  3. Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A. (1984). High-order velocity structure functions in turbulent shear flows.J. Fluid Mech. 140, 63–89.Google Scholar
  4. Antonia, A. R. and Sreenivasan, K. R. (1977). Log-normality of temperature dissipation in a turbulent boundary layer.Phys. Fluids 20, 180–1804.Google Scholar
  5. Antonia, R. A., Hopfinger, E. J., Gagne, Y., and Anselmet, F. (1984). Temperature structure functions in turbulent shear flows.Phys. Rev. A 30, 2704–2707.Google Scholar
  6. Ashurst, W. T., Kerstein, A. R., Effelsberg, E., and Peters, N. (1983). Calculated scalar dissipation in two-dimensional flows. Technical Report SAND82-8895, Sandia National Laboratory, Livermore, California.Google Scholar
  7. Ashurst, W. T., Chen, J.-Y., and Rogers, M. M. (1987a). Pressure gradient alignment with strain rate and scalar gradient in simulated Navier-Stokes turbulence.Phys. Fluids 30, 3293–3294.Google Scholar
  8. Ashurst, W. T., Kerstein, A. R., Kerr, R. M., and Gibson, C. H. (1987b). Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence.Phys. Fluids 30, 2343–2353.Google Scholar
  9. Batchelor, G. K. and Townsend, A. A. (1949). The nature of turbulence motion at large wave numbers.Proc. R. Soc. London Ser. A 199, 534–550.Google Scholar
  10. Boris, J. P. and Book, D. L. (1976). Solution of the continuity equations by the method of flux corrected transport. InMethods in Computational Physics, Academic Press, New York,16, 85–129.Google Scholar
  11. Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, S., Thomae, S., Wu, X. Z., Zaleski, S., and Zanetti, G. (1989). Scaling of hard thermal turbulence in Rayleigh-Bernard convection.J. Fluid Mech. 204, 1–30.Google Scholar
  12. Castaing, B., Gagne, Y., and Hopfinger, E. J. (1990). Velocity probability density functions of high Reynolds number turbulence.Physica D 46, 177–200.Google Scholar
  13. Champagne, F. H., Harris, V. G., and Corrsin, S. (1970). Experiments on nearly homogeneous shear flow.J. Fluid Mech. 41, 81–139.Google Scholar
  14. Chen, S., Doolen, G., Herring, J. R., Kraichnan, R. H., Orszag, S. A., and She, Z. S. (1993). Far-dissipation range of turbulence.Phys. Rev. Lett. 70, 3051–3054.Google Scholar
  15. Chen, W. Y. (1971). Lognormality of small-scale structure of turbulence.Phys. Fluids 14, 1639–1642.Google Scholar
  16. Dahm, W. J. A. and Buch, K. A. (1989). Lognormality of the scalar dissipation PDF in turbulent flows.Phys. Fluids A 1, 1290–1293.Google Scholar
  17. Frisch, U., Sulem, P. L., and Nelkin, M. (1978). A simple dynamical model of intermittent fully developed turbulence.J. Fluid Mech. 87, 719–736.Google Scholar
  18. Gollub, J. P., Clarke, J., Gharib, M., Lane, B., and Mesquita, O. N. (1991). Fluctuations and transport in a stirred fluid with a mean gradient.Phys. Rev. Lett. 67, 3507–3510.Google Scholar
  19. Gurvich, A. S. and Yaglom, A. M. (1967). Breakdown of eddies and probability distributions for small-scale turbulence.Phys. Fluids Supplement 10, S59-S65.Google Scholar
  20. Harris, V. G., Graham, A. H., and Corrsin, S. (1977). Further experiments in nearly homogeneous turbulent shear flow.J. Fluid Mech. 81, 657–687.Google Scholar
  21. Hosokawa, I. (1989). An advanced model of dissipation cascade in locally isotropic turbulence.Phys. Fluids A 1, 186–189.Google Scholar
  22. Jaberi, F. A., Miller, R. S., and Givi, P. (1995). Conditional expected dissipation and diffusion in turbulent scalar mixing and reaction. Chapter inTransport Phenomena in Combustion, Editor: S. H. Chan, Taylor & Francis, Washington, D.C., in press.Google Scholar
  23. Jaberi, R. S. (1995). Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York. In preparation.Google Scholar
  24. Jayesh and Warhaft, Z. (1992). Probability distribution of a passive scalar in grid-generated turbulence.Phys. Rev. Lett. 67, 3503–3506.Google Scholar
  25. Jayesh and Warhaft, Z. (1992). Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence.Phys. Fluids A 4, 2292–2307.Google Scholar
  26. Kerr, R. M. (1985). High-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence.J. Fluid Mech. 153, 31–58.Google Scholar
  27. Kerr, R. M. (1987). Histograms of helicity and strain in numerical turbulence.Phys. Rev. Lett. 59, 783–786.Google Scholar
  28. Kerstein, A. R. and Ashurst, W. T. (1984). Lognormality of gradients of diffusive scalars in homogeneous, two-dimensional mixing systems.Phys. Fluids 27, 2819–2827.Google Scholar
  29. Kimura, Y. and Kraichnan, R. H. (1993). Statistics of an advected passive scalar.Phys. Fluids A 5, 2264–2277.Google Scholar
  30. Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for large Reynolds numbers.Dokl. Akad. Nauk SSSR 30, 301–305.Google Scholar
  31. Kolmogorov, A. N. (1962). A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number.J. Fluid Mech. 13, 82–85.Google Scholar
  32. Kraichnan, R. H. (1990). Models of intermittency in hydrodynamic turbulence.Phys. Rev. Lett. 65, 575–578.Google Scholar
  33. Landau, L. D. and Lifshitz, E. M. (1959).Fluid Mechanics. Pergamon Press, London, U.K. First Russian edition published in Moscow in 1944.Google Scholar
  34. Lane, B. R., Mesquita, O. N., Meyers, S. R., and Gollub, J. P. (1993). Probability distributions and thermal transport in a turbulent grid flow.Phys. Fluids A 5, 2255–2263.Google Scholar
  35. Miller, R. S., Madnia, C. K., and Givi, P. (1994). Structure of a turbulent reacting mixing layer.Combust. Sci. and Tech. 99, 1–36.Google Scholar
  36. Monin, A. S. and Yaglom, A. M. (1975).Statistical Fluid Mechanics, Vol. 2. MIT Press.Google Scholar
  37. Namazian, M., Schefer, R. W., and Kelly, J. (1987). Scalar dissipation measurements in the developing region of a jet. Technical Report SAND87-8652, Sandia National Laboratories, Albuquerque, New Mexico.Google Scholar
  38. Nomura, K. K. and Elgobashi, S. E. (1992). Mixing characteristics of an inhomogeneous scalar in isotropic and homogeneous sheared turbulence.Phys. Fluids A 4, 606–625.Google Scholar
  39. Novikov, E. A. and Stewart, R. W. (1964). The intermittency of turbulence and the spectrum of energy dissipation fluctuations.Izv. Geophys. 3, 408.Google Scholar
  40. Obukhov, A. M. (1962). Some specific features of atmospheric turbulence.J. Fluid Mech. 13, 77–81.Google Scholar
  41. Oran, E. S. and Boris, J. P. (1987).Numerical Simulations of Reactive Flows. Elsevier Publishing Company, Washington, D.C.Google Scholar
  42. Parisi, G. and Frisch, U. (1984). In Benzi, G. R. and Parisi, G., (eds.),Turbulence and Predictability in Geophysical Fluid Mechanics and Climate Dynamics, North Holland, New York, p. 84.Google Scholar
  43. Pope, S. B. and Ching, E. S. C. (1993). Stationary probability density functions: An exact result.Phys. Fluids A 5, 1529–1531.Google Scholar
  44. Pope, S. B. (1985). PDF methods for turbulent reacting flows.Prog. Energy Combust. Sci. 11, 119–192.Google Scholar
  45. Pumir, A., Shraiman, B., and Siggia, E. D. (1991). Exponential tails and random advection.Phys. Rev. Lett. 3, 2838–2840.Google Scholar
  46. Rogallo, R. S. (1981). Numerical experiments in homogeneous turbulence. NASA TM 8131.Google Scholar
  47. Rogers, M. M., Moin, P., and Reynolds, W. C. (1986). The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Department of Mechanical Engineering TF-25, Stanford University, Stanford, California.Google Scholar
  48. Ruetsch, G. R. and Maxey, M. R. (1991). Small-scale features of vorticity and passive scalar fields in homogeneous-isotropic turbulence.Phys. Fluids A 3, 1587–1597.Google Scholar
  49. Ruetsch, G. R. and Maxey, M. R. (1992). The evolution of small-scale structures in homogeneous-isotropic turbulence.Phys. Fluids A 4, 2747–2760.Google Scholar
  50. Sano, M., Wu, X. Z., and Libchaber, A. (1989). Turbulence in helium gas free convection.Phys. Rev. A 40, 6421–6430.Google Scholar
  51. She, Z. S., Jackson, E., and Orszag, S. A. (1991). Structure and dynamics of homogeneous turbulence: Models and simulations.Proc. R. Soc. London A 434, 101–124.Google Scholar
  52. She, Z. C. (1990). Physical model of intermittency in turbulence: Near dissipation range non-gaussian statistics.Phys. Rev. Lett. 66, 600–603.Google Scholar
  53. She, Z. S. (1991). Intermittency and non-gaussian statistics in turbulence.Fluid Dynamics Research 8, 143–158.Google Scholar
  54. Sinai, Y. G. and Yakhot, V. (1989). Limiting probability distributions of a passive scalar in a random velocity field.Phys. Rev. Lett. 63, 1962–1964.Google Scholar
  55. Sreenivasan, K. R., Antonia, R. A., and Danh, H. Q. (1977). Temperature dissipation fluctuations in a turbulent boundary layer.Phys. Fluids 20, 1238–1249.Google Scholar
  56. Tavoularis, S. and Corrsin, S. (1981a). Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1.J. Fluid Mech. 104, 311–347.Google Scholar
  57. Tavoularis, S. and Corrsin, S. (1981b). Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure.J. Fluid Mech. 104, 349–367.Google Scholar
  58. Van Atta, C. W. and Chen, W. Y. (1970). Structure functions of turbulence in the atmospheric boundary layer over the ocean.J. Fluid Mech. 44, 145–159.Google Scholar
  59. Vincent, A. and Meneguzzi, M. (1991). The spatial structure and statistical properties of homogeneous turbulence.J. Fluid Mech. 225, 1–20.Google Scholar
  60. Yamazaki, H. (1990). Breakage models: Lognormality and intermittency.J. Fluid Mech. 219, 181–193.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • R. S. Miller
    • 1
  • F. A. Jaberi
    • 1
  • C. K. Madnia
    • 1
  • P. Givi
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringState University of New York at BuffaloBuffalo

Personalised recommendations