International Journal of Theoretical Physics

, Volume 22, Issue 1, pp 29–53 | Cite as

Second quantization, projective modules, and local gauge invariance

  • S. A. Selesnick
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiyah, M. F., and Jones, J. D. S. (1978).Communications in Mathematical Physics,61, 97.Google Scholar
  2. Bass, H. (1968).Algebraic K-theory, W. A. Benjamin, New York.Google Scholar
  3. Bjorken, J. D., and Drell, S. D. (1964).Relativistic Quantum Mechanics, McGraw-Hill, New York.Google Scholar
  4. Bjorken, J. D., and Drell, S. D. (1965).Relativistic Quantum Fields, McGraw-Hill, New York.Google Scholar
  5. Bogoliubov, N. N. (1967).Lectures on Quantum Statistics, Vol. 1, MacDonald, London.Google Scholar
  6. Cartier, P. (1966). “Quantum mechanical commutation relations and theta functions,” Proceedings of Symposia in Pure Mathematics IX, American Mathematical Society, Providence, Rhode Island.Google Scholar
  7. Kostant, B. (1970). “Quantization and unitary representation,” inLectures in Modern Analysis and Applications III, edited by C. T. Taam, Lecture Notes in Mathematics 170, Springer, Berlin.Google Scholar
  8. Kuiper, N. (1953). “Sur les surfaces localement affines,” Colloque de Géométrie Differentielle, Strasbourg.Google Scholar
  9. Lang, S., (1965).Algebra, Addison-Wesley, Reading, Massachusetts.Google Scholar
  10. MacLane, S. (1967).Homology, Springer-Verlag, New York.Google Scholar
  11. Misner, S. W., Thorne, K. S., and Wheeler, J. A. (1973)Gravitation, W. H. Freeman, San Francisco.Google Scholar
  12. Mulvey, C. J. (1976).Mathematische zeitschrift,151, 57.Google Scholar
  13. Roman, P. (1965).Advanced Quantum Theory, Addison-Wesley, Reading, Massachusetts.Google Scholar
  14. Scadron, M. D. (1979).Advanced Quantum Theory, Springer-Verlag, New York.Google Scholar
  15. Segal, I. E. (1963).Mathematical Problems of Relativistic Physics, American Mathematical Society, Providence, Rhode Island.Google Scholar
  16. Selesnick, S. A. (1979). “Rank one projective modules over certain Fourier algebras,”Applications of Sheaves, edited by M. P. Fourman, C. J. Mulvey, and D. S. Scott, Lecture Notes in Mathematics 753, Springer, Berlin.Google Scholar
  17. Śniatycki, J. (1974).Journal of Mathematical Physics,15, 619.Google Scholar
  18. Swan, R. G. (1968).Algebraic K-theory, Lecture Notes in Mathematics 76, Springer-Verlag, New York.Google Scholar
  19. Taylor, J. C. (1979).Gauge Theories of Weak Interactions, Cambridge University Press, Cambridge.Google Scholar
  20. Vaisman, I. (1973)Cohomology and Differential Forms, Marcel Dekker, New York.Google Scholar
  21. Yang, C. N., and Mills, R. L. (1954).Physical Review,96, 191.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • S. A. Selesnick
    • 1
  1. 1.Department of Mathematical SciencesUniversity of Missouri-St. LouisSt. Louis

Personalised recommendations