Microwave cavity perturbation technique: Part III: Applications

  • Martin Dressel
  • Olivier Klein
  • Steve Donovan
  • George Grüner
Article

Abstract

The resonant cavity perturbation method as described in the preceding two parts of this series is applied to study the electrodynamical properties of different materials in the microwave and millimeter wave spectral range. We briefly discuss the relevant uncertainties which are asociated with the different measurement techniques and we find that employing the amplitude technique it is possible to measure both the width and frequency to nearly the same precision. We then demonstrate the broad range of applicability of this technique by showing results obtained on several different materials, ranging from an insulator to a superconductor. The performance limitations of this technique are discussed in detail.

Keywords

millimeter wave measurement experimental error permittivity conductivity surface impedance thermal expansion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. v. Hippel,Dielectrics and Waves (Wiley, New York, 1954).Google Scholar
  2. [2]
    A. v. Hippel,Dielectric Materials and Applications (Technology Press M.I.T., Wiley, Cambridge/New York, 1954).Google Scholar
  3. [3]
    M. Sucher and J. Fox,Handbook of Microwave Measurements, Third Edition (Polytechnic Press, New York/London, 1963).Google Scholar
  4. [4]
    H. W. Helberg and B. Wartenberg,Z. angew. Phys. 20, 505 (1966).Google Scholar
  5. [5]
    M. N. Afsar and K. J. Button,Proc. IEEE 73, 131 (1985).Google Scholar
  6. [6]
    G. Grüner,Rev. Mod. Phys. 60, 1129 (1988).Google Scholar
  7. [7]
    N. F. Mott and E. A. Davis,Electronic Processes in Non-Crystalline Materials, Second Edition (Clarendon Press, Oxford, 1979).Google Scholar
  8. [8]
    B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin/Heidelberg/New York, 1984), (Springer Series in Solid-State Science 45).Google Scholar
  9. [9]
    L. I. Buranov and I. F. Shchegolev,Instrum. & Exp. Tech. 14, 528 (1971).Google Scholar
  10. [10]
    I. F. Shchegolev,Phys. Stat. Sol. (a) 12, 9 (1972).Google Scholar
  11. [11]
    M. Dressel, H. W. Helberg, and D. Schweitzer,Synth. Met. 41–43, 2043 (1991), and references therein.Google Scholar
  12. [12]
    O. Klein, S. Donovan, M. Dressel, and G. Grüner,Int. J. Infrared and Millimeter Waves 14 (1993) (pre-preceding article).Google Scholar
  13. [13]
    S. Donovan, O. Klein, M. Dressel, K. Holczer, and G. Grüner,Int. J. Infrared and Millimeter Waves 14 (1993) (preceding article).Google Scholar
  14. [14]
    K. Bender, K. Dietz, H. Endres, H. W. Helberg, I. Hennig, H. J. Keller, H. W. SchÄfer, and D. Schweitzer,Mol. Cryst. Liq. Cryst. 107, 45 (1984).Google Scholar
  15. [16]
    M. Dressel, G. Grüner, J. P. Pouget, A. Breining, and D. Schweitzer (submitted toJ. Phys. (France) I).Google Scholar
  16. [17]
    D. Jérome and H. J. Schulz,Adv. Phys. 31, 299 (1982).Google Scholar
  17. [18]
    S. Donovan, Y. Kim, L. Degiorgi, and G. Grüner,J. Phys. I. (France) 3, 1493 (1993).Google Scholar
  18. [19]
    S. Donovan, M. Dressel, Y. Kim, L. Degiorgi, G. Grüner, and W. Wonneberger, Submitted toPhys. Rev. B, June 1993.Google Scholar
  19. [20]
    K. Bechgaard, C. S. Jacobsen, K. Mortensen, H. J. Pedersen, and N. Thorup,Solid State Commun. 33, 1119 (1980).Google Scholar
  20. [21]
    B. Gallois, J. Gaultier, C. Hauw, D. Chasseau, A. Meresse, A. Filhol, and K. Bechgaard,Mol. Cryst. Liq. Cryst. 119, 225 (1985).Google Scholar
  21. [22]
    R. Pott and R. Schefzyk,J. Phys. E: Sci. Instrum. 16, 444 (1983).Google Scholar
  22. [23]
    J. L. Ferraris and T. F. Finnegan,Solid State Commun. 18, 1169 (1976).Google Scholar
  23. [24]
    J. L. Miane, F. Carmona, and P. Delhaes,Phys. Stat. Sol. (b) 111, 235 (1982).Google Scholar
  24. [25]
    H. Urayama, H. Yamochi, G. Saito, K. Nozawa, T. Sugano, M. Kinoshita, S. Sato, K. Oshima, A. Kawamoto, and J. Tanaka,Chem. Lett., 1988.Google Scholar
  25. [26]
    K. Holczer, D. Quinlivan, O. Klein, and G. Grüner,Solid State Commun. 76, 499 (1990).Google Scholar
  26. [27]
    O. Klein, K. Holczer, G. Grüner, J. J. Chang, and F. Wudl,Phys. Rev. Lett. 66, 655 (1991).Google Scholar
  27. [28]
    M. Dressel, O. Klein, G. Grüner, K. D. Carlson, H. H. Wang, and J. M. Williams, (to be published).Google Scholar
  28. [29]
    D. R. Harshman, R. N. Kleiman, R. C. Haddon, S. V. Chichester-Hicks, M. L. Kaplan, L. W. Rupp, T. Pfiz, D. L. Williams, and D. B. Mitzi,Phys. Rev. Lett. 64, 1293 (1990).Google Scholar
  29. [30]
    M. Dressel, S. Brader, G. Grüner, K. D. Carlson, H. H. Wang, and J. M. Williams,Phys. Rev. B (in press).Google Scholar
  30. [31]
    O. Klein, K. Holczer, and G. Grüner, (to be published).Google Scholar
  31. [32]
    B. W. Maxfield and W. L. M. Lean,Phys. Rev. 139, A1515 (1965).Google Scholar
  32. [33]
    D. C. Mattis and J. Bardeen,Phys. Rev. 111, 412 (1958).Google Scholar
  33. [34]
    M. Tinkham,Introduction to Superconductivity (Mc Graw-Hill, New York, 1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Martin Dressel
    • 1
  • Olivier Klein
    • 1
  • Steve Donovan
    • 1
  • George Grüner
    • 1
  1. 1.Department of Physics and Solid Stage Science CenterUniversity of California, Los AngelesLos Angeles

Personalised recommendations