International Journal of Infrared and Millimeter Waves

, Volume 14, Issue 11, pp 2269–2275

On the polarizability dyadics of electrically small, convex objects

  • Akhlesh Lakhtakia
Article

Abstract

This communication on the polarizability dyadics of electrically small objects of convex shapes has been prompted by a recent paper published by Sihvola and Lindell on the polarizability dyadic of an electrically gyrotropic sphere. A mini-review of recent work on polarizability dyadics is appended.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Sihvola and I. V. Lindell: Polarizability of gyrotropic sphere.Int. J. Infrared Millimeter Waves 14, 1547–1552 (August 1993).Google Scholar
  2. 2.
    A. Lakhtakia, V. K. Varadan and V. V. Varadan: Low-frequency scattering by an imperfectly conducting sphere immersed in a dc magnetic field.Int. J. Infrared Millimeter Waves 12, 1253–1264 (November 1991).Google Scholar
  3. 3.
    A. Lakhtakia: A note on low-frequency scattering by an infinitely-long, conducting, circular cylinder immersed in a dc magnetic field.Proc. Indian Natn. Sci. Acad. A 58, 313–317 (1992).Google Scholar
  4. 4.
    A. Lakhtakia and B. Shanker: Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell-Garnett model.Int. J. Appl. Electromagn. Mater. 4, 65–82 (1993).Google Scholar
  5. 5.
    A. Lakhtakia: Isotropic Maxwell-Garnett model for biisotropic-in-biisotropic composites.Int. J. Infrared Millimeter Waves 13, 551–558 (1992).Google Scholar
  6. 6.
    A. Lakhtakia and W. S. Weiglhofer: Maxwell-Garnett estimates of the effective properties of a general class of discrete random composites.Acta Cryst. A 49, 266–269 (1993).Google Scholar
  7. 7.
    R. D. Kampia and A. Lakhtakia: Bruggeman model for chiral particulate composites.J. Phys. D: Appl. Phys. 25, 1390–1394 (1992).Google Scholar
  8. 8.
    C. E. Dungey and C. F. Bohren: Backscattering by nonspherical hydrometeors as calculated by the coupled-dipole method.J. Atmos. Oceanic Technol. 10, 526–532 (1993).Google Scholar
  9. 9.
    S. B. Singham: Intrinsic optical activity in light scattering from an arbitrary particle.Chem. Phys. Lett. 130, 139–144 (1986).Google Scholar
  10. 10.
    A. Lakhtakia: Macroscopic theory of the coupled dipole approximation method.Optics Commun. 79, 1–5 (1990).Google Scholar
  11. 11.
    A. Lakhtakia: General theory of the Purcell-Pennypacker scattering approach, and its extension to bianisotropic scatterers.Astrophys. J. 394, 494–499 (1992).Google Scholar
  12. 12.
    A. Lakhtakia: Perturbation of a resonant cavity by a small bianisotropic sphere.Int. J. Infrared Millimeter Waves 12, 109–114 (1991).Google Scholar
  13. 13.
    A. J. Viitanen and I. V. Lindell: Perturbation theory for a corrugated waveguide with a bi-isotropic rod.Microwave Opt. Tech. Lett. 5, 729–732 (1992).Google Scholar
  14. 14.
    D. Rogovin, R. McGraw, W. Ho, R. Shin, H. R. Fetterman and B. Bobbs: Nonlinear microwave optics in liquid suspensions of shaped microparticles.IEEE Trans. Microwave Theory Tech. 40, 1780–1788 (1992).Google Scholar
  15. 15.
    O. D. Kellogg:Foundations of Potential Theory. Dover, New York (1953); Chapter 7. This book was first published in 1929.Google Scholar
  16. 16.
    A. D. Yaghjian: Electric dyadic Green's functions in the source region.Proc. IEEE 68, 248–263 (1980).Google Scholar
  17. 17.
    A. Lakhtakia: Scattering by an infinitely-long bianisotropic cylinder with electrically small, convex cross-section.Optics Commun. 80, 303–306 (1991).Google Scholar
  18. 18.
    A. Lakhtakia: General theory of the Purcell-Pennypacker scattering approach, and its extension to bianisotropic scatterers.Astrophys. J. 394, 494–499 (1992).Google Scholar
  19. 19.
    A. Lakhtakia: Polarizability dyadics of small bianisotropic spheres.J. Phys. France 51, 2235–2242 (1990).Google Scholar
  20. 20.
    A. Lakhtakia: Dyadic procedure for planewave scattering by simply moving, electrically small, bianisotropic spheres.Z. Naturforsch. A 46, 1033–1046 (1991).Google Scholar
  21. 21.
    A. Lakhtakia, V. K. Varadan and V. V. Varadan: Simple expressions for scattering by a chiral elliptic cylinder of small cross-sectional dimensions.J. Opt. Soc. Amer. A 8, 1421–1424 (1991).Google Scholar
  22. 22.
    A. H. Sihvola and I. V. Lindell: Polarizability and mixing formula for chiral ellipsoids.Electron. Lett. 26, 1007–1009 (1990).Google Scholar
  23. 23.
    A. Lakhtakia: Polarizability dyadics of small chiral ellipsoids.Chem. Phys. Lett. 174, 583–586 (1990).Google Scholar
  24. 24.
    A. Lakhtakia: Electromagnetic response of an electrically small bianisotropic ellipsoid immersed in a chiral fluid.Ber. Bunsenges. Phys. Chem. 95, 574–576 (1991).Google Scholar
  25. 25.
    A. Lakhtakia: Rayleigh scattering by a bianisotropic ellipsoid in a biisotropic medium.Int. J. Electronics 71, 1057–1062 (1991).Google Scholar
  26. 26.
    A. Lakhtakia and W. S. Weiglhofer: Scattering by an electrically small bianisotropic sphere in a gyroelectromagnetic uniaxial medium.IEE Proc. H 139, 217–220 (1992).Google Scholar
  27. 27.
    A. Lakhtakia: Toward classifying elementary microstructures in thin films by their scattering responses.Int. J. Infrared Millimeter Waves 13, 869–886 (1992); errata:14, 663 (1993).Google Scholar
  28. 28.
    A. Lakhtakia: Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic fields.Int. J. Modern Phys. C 3, 583–603 (1992); errata:4, 721 (1993).Google Scholar
  29. 29.
    D. C. Skigin, M. L. Gigli, M. E. Inchaussandague, N. E. Bonomo and C. I. Valencia: Reflection of light by a slab containing electrically small dielectric spheres.Int. J. Infrared Millimeter Waves 14, 1323–1339 (1993).Google Scholar
  30. 30.
    B. Shanker and A. Lakhtakia: Extended Maxwell Gamett formalism for composite adhesives for microwave-assisted adhesion of polymer surfaces.J. Composite Mater. 27, 1203–1213 (1993).Google Scholar
  31. 31.
    H. C. van de Hulst:Light Scattering by Small Particles. Dover, New York (1981). This book was first published in 1957.Google Scholar
  32. 32.
    W. T. Doyle: Optical properties of a suspension of metal spheres.Phys. Rev. B 39, 9852–9858 (1989).Google Scholar
  33. 33.
    C. A. Grimes: Electromagnetic properties of random material.Waves in Random Media 1, 265–273 (1991).Google Scholar
  34. 34.
    B. T. Draine: The discrete-dipole approximation and its application to interstellar graphite grains.Astrophys. J. 333, 848–872 (1988).Google Scholar
  35. 35.
    Y. Ma, V. V. Varadan and V. K. Varadan: Analytical expressions for the field scattered by a small chiral sphere.J. Wave-Mater. Interact. 4, 345–349 (1989).Google Scholar
  36. 36.
    B. Shanker and A. Lakhtakia: Scattering of Beltrami fields by anisotropic impedance spheres.Electromagnetics 12, 217–229 (1992).Google Scholar
  37. 37.
    C. F. Bohren: Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles.J. Atmos. Sci. 43, 468–475 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Akhlesh Lakhtakia
    • 1
  1. 1.Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity Park

Personalised recommendations