International Journal of Thermophysics

, Volume 16, Issue 6, pp 1381–1392 | Cite as

Ideal-gas thermodynamic properties for natural-gas applications

  • M. Jaeschke
  • P. Schley
Article

Abstract

Calculating caloric properties from a thermal equation of state requires information such as isobaric heat capacities in the ideal-gas state as a function of temperature. In this work, values for the parameters of thecp0 correlation proposed by Aly and Lee were newly determined for 21 pure gases which are compounds of natural gas mixtures. The values of the parameters were adjusted to selectedcp0 data calculated from spectroscopic data for temperatures ranging from 10 to 1000 K. The data sources used are discussed and compared with literature data deduced from theoretic models and caloric measurements. The parameters presented will be applied in a current GERG project for evaluating equations of state (e.g., the AGA 8 equation) for their suitability for calculating caloric properties.

Key words

caloric properties equation of state ideal gas isobaric heat capacity natural gas speed of sound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Laughton and A. E. Humphreys,Improvements in the Formulation of Ideal Gas Thermodynamic Properties for Natural Gas Applications, Proc. 4th IGRC, Tokyo, 1989 (Government Institutes Inc., Rockville, MD, 1990), pp. 1769–1778.Google Scholar
  2. 2.
    J. L. Savidge and J. J. S. Shen,Sound Speed of Natural Gas, Proc. 4th IGRC, Tokyo, 1989 (Government Institutes Inc., Rockville, MD, 1990), pp. 511–519.Google Scholar
  3. 3.
    F. A. Aly and L. L. Lee,Fluid Phase Equil. 6:169 (1981).Google Scholar
  4. 4.
    K. E. Starling and J. L. Savidge,Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases [American Gas Association (AGA) Transmission Measurement Committee Report No. 8, 2nd ed., 1992).Google Scholar
  5. 5.
    R. S. McDowell and F. H. Kruse,J. Chem. Eng. Data 8:547 (1963).Google Scholar
  6. 6.
    J. Hilsenrath, C. W. Beckett, W. C. Benedict, L. Fano, H. J. Hodge, I. F. Masi, R. L. Nutall, Y. S. Touloukian, and H. W. Woolley, Tables of thermal properties of gases.NBS Circ. 564:473 (1955).Google Scholar
  7. 7.
    J. Chao, personal communication to R. Span (Ruhr-UniversitÄt, Bochum).Google Scholar
  8. 8.
    J. Chao, R. C. Wilhoit, and B. J. Zwolinski,J. Phys. Chem. Ref. Data 2:427 (1973).Google Scholar
  9. 9.
    S. S. Chen, R. C. Wilhoit, and B. J. Zwolinski,J. Phys. Chem. Ref. Data 4:859 (1975).Google Scholar
  10. 10.
    TRC,Thermodynamic Tables (Thermodynamic Research Center, Texas A&M University, College Station, 1972–1993).Google Scholar
  11. 11.
    K. SchÄfer and W. Auer,Values for the Thermodynamic Functions at Standard Pressures as a Function of Temperature for Selected Substances (Werte der thermodynamischen Funktionen bei Standarddrücken in AbhÄngigkeit von der Temperatur für ausgewÄhlte Stoffe) (Springer, Berlin, 1961).Google Scholar
  12. 12.
    H. D. Baehr, H. Hartmann, H. C. Pohl, and H. SchomÄcker,Thermodynamic Functions of Ideal Gases for Temperatures up to 6000 K (Thermodynamische Funktionen idealer Gase für Temperaturen bis 6000 K) (Springer, Berlin, 1968).Google Scholar
  13. 13.
    H. W. Woolley, inWater and Steam, Their Properties and Current Industrial Applications (Pergamon, Elmsford, NY, 1980), pp. 166–175.Google Scholar
  14. 14.
    H. W. Woolley,J. Res. NBS 92:35 (1987).Google Scholar
  15. 15.
    JANAF,Thermodynamic Tables (3rd. ed.), M. W. Chase, J. L. Curnutt, J. R. Downey, R. A. McDonald, A. N. Syverud, and E. A. Valenzuela,J. Phys. Chem. Ref. Data 14:Suppl. 1 (1985).Google Scholar
  16. 16.
    W. Lemming,Experimental Determination of Acoustic and Thermal Virial Coefficients for Working Fluids in Chemical Engineering (Experimentelle Bestimmung akustischer und thermischer Virialkoffizienten von Arbeitsstoffen der Energietechnik) (VDI Fortschritt-Berichte, Reihe 19, Nr. 32, VDI-Verlag, Düsseldorf, 1989).Google Scholar
  17. 17.
    J. P. M. Trusler and M. Zarari,J. Chem. Thermodyn. 24:973 (1992).Google Scholar
  18. 18.
    M. B. Ewing and A. R. H. Goodwin,J. Chem. Thermodyn. 24:1257 (1992).Google Scholar
  19. 19.
    W. Beckermann,Speed of Sound Measurements on Working Fluids in Chemical Engineering (Messung der Schallgeschwindigkeiten an Arbeitsstoffen der Energietechnik) (VDI-Fortschritt-Berichte, Reihe 19, Nr. 67, VDI-Verlag, Düsseldorf, 1993).Google Scholar
  20. 20.
    J. A. Goff and S. Gratch,Trans. ASME 72:741 (1950)Google Scholar
  21. 21.
    H. W. Woolley, personal communication to V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarny,Thermodynamic Properties of Nitrogen (Springer, Berlin, 1970).Google Scholar
  22. 22.
    L. V. Gurvich,Thermodynamic Properties of Characteristic Substances, Vol. II, Part 2 (Nauka, Moscow, 1979).Google Scholar
  23. 23.
    J. P. M. Trusler,Physica A 184:415 (1992).Google Scholar
  24. 24.
    H. W. Woolley,J. Res. NBS 52:289 (1954).Google Scholar
  25. 25.
    J. F. Masi and B. Petkof,J. Res. NBS 48:179 (1952).Google Scholar
  26. 26.
    G. Ernst, G. Maurer, and E. Wiederuh,J. Chem. Thermodyn. 21:53 (1989).Google Scholar
  27. 27.
    W. Lemming, personal communication to R. Span (Ruhr-UniversitÄt, Bochum, 1989).Google Scholar
  28. 28.
    K. M. Pamidimukkala, D. Rogers, and G. B. Skinner,J. Phys. Chem. Ref. Data 11:83 (1982).Google Scholar
  29. 29.
    G. B. Kistiakowsky and W. W. Rice,J. Chem. Phys. 8:610 (1940).Google Scholar
  30. 30.
    B. P. Daily and W. A. Felsing,J. Am. Chem. Soc. 65:42 (1943).Google Scholar
  31. 31.
    G. Ernst and U. E. Hochberg,J. Chem. Thermodyn. 21:407 (1989).Google Scholar
  32. 32.
    G. B. Kistiakowsky, J. R. Lacher, and W. W. Ransom,J. Chem. Phys. 8:970 (1940).Google Scholar
  33. 33.
    G. B. Kistiakowsky and W. W. Rice,J. Chem. Phys. 8:610 (1940).Google Scholar
  34. 34.
    G. Ernst and J. Büsser,J. Chem. Thermodyn. 2:787 (1970).Google Scholar
  35. 35.
    M. B. Ewing, A. R. H. Goodwin, M. L. McGlashan, and J. P. M. Trusler,J. Chem. Thermodyn. 21:867 (1989).Google Scholar
  36. 36.
    S. O. Colgate, C. F. Sona, K. Reed, and A. Sivaraman,J. Chem. Eng. Data 4:859 (1990).Google Scholar
  37. 37.
    P. F. Wacker, R. K. Cheney, and R. B. Scott,J. Res. NBS 38:651 (1947).Google Scholar
  38. 38.
    D. W. Scott,J. Chem. Phys. 60:3144 (1974).Google Scholar
  39. 39.
    M. B. Ewing, A. R. H. Goodwin, and J. P. M. Trusler,J. Chem. Thermodyn. 21:867 (1989).Google Scholar
  40. 40.
    H. Zeise,Thermodynamic, Vol. II, Part 1, Tables (Thermodynamik, Bd. III/1, Tabellen) (Hirzel, Leipzig, 1954).Google Scholar
  41. 41.
    P. Schley,Development of Correlations for the Isobaric Heat Capacity in the State of the Ideal-Gas (Entwicklung von Korrelationsgleichungen für die isobare WÄrmekapazitÄt im Zustand des idealen Gases) (Diplomarbeit, Ruhr-UniversitÄt, Bochum, 1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • M. Jaeschke
    • 1
  • P. Schley
    • 2
  1. 1.Applied Physics SectionRuhrgas AGDorstenGermany
  2. 2.Ruhr-University of BochumBochumGermany

Personalised recommendations