Large numbers hypothesis. IV. The cosmological constant and quantum physics

  • Peter J. Adams


In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.


Field Theory Elementary Particle Quantum Field Theory Field Equation Cosmological Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. J. (1982).International Journal of Theoretical Physics,21, 607.Google Scholar
  2. Adams, P. J. (1983).International Journal of Theoretical Physics,22, 421.Google Scholar
  3. Canuto, V., and Lee, J. F. (1977).Physics Letters,72B, 281.Google Scholar
  4. DeWitt, B. S. (1975).Physics Reports,19, 295.CrossRefGoogle Scholar
  5. Dirac, P. A. M. (1937).Nature,139, 323.Google Scholar
  6. Einstein, A. (1917).Sitzungsberichte der Preussischen Akademie der Wissenschaften, 142. Translated inThe Principle of Relativity, Dover, New York, p. 175.Google Scholar
  7. Fronsdal, C. (1979).Physical Review D,20, 848, and references therein.CrossRefGoogle Scholar
  8. Hickson, P., and Adams, P. J. (1979).Astrophysical Journal Letters,234, L87.CrossRefGoogle Scholar
  9. Hubble, E. P. (1929).Proceedings of the National Academy of Sciences, U.S.A.,15, 169.Google Scholar
  10. Kaku, M., Townsend, P. K., and van Nieuwenhuizen, P. (1977).Physics Letters,69B, 304.Google Scholar
  11. Kirzhnitz, D. A., and Linde, A. D., (1976).Annals of Physics, (N.Y.) 101, 195.Google Scholar
  12. Linde, A. D. (1979).Reports on Progress in Physics,42, 389.CrossRefGoogle Scholar
  13. MacDowell, S. W., and Mansouri, F. (1977).Physical Review Letters,38, 739.CrossRefGoogle Scholar
  14. Misner, C., Thorne, K., and Wheeler, J. (1973).Gravitation, Freeman, San Francisco.Google Scholar
  15. Spivak, M. (1979).A Comprehensive Introduction to Differential Geometry, Vol. 5, Publish or Perish, Inc., Berkeley, p. 385.Google Scholar
  16. Zel'dovich, Ya. B. (1968).Soviet Physics Uspekhi,11, 381.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Peter J. Adams
    • 1
  1. 1.Physics DepartmentUniversity of Puget SoundTacoma

Personalised recommendations