Advertisement

International Journal of Theoretical Physics

, Volume 35, Issue 3, pp 605–631 | Cite as

Gravitational repulsion and Dirac antimatter

  • Mark Kowitt
Article

Abstract

Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

Keywords

Field Theory General Relativity Elementary Particle Quantum Field Theory Potential Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C. D. (1932).Science,76, 238.Google Scholar
  2. Berestetzky, V. B., and Landau, L. D. (1949).Zhurnal Experimental'noi i Teoreticheskoi Fiziki,19, 673, 1130.Google Scholar
  3. Bondi, H. (1957).Reviews of Modern Physics,29, 423.Google Scholar
  4. Braginsky, V. L., Caves, C. M., and Thorne, K. S. (1977).Physical Review D,15, 2047.Google Scholar
  5. Chu, S. (1990). Atomic fountains, funnels, and rings, inPhysics News in 1990, American Institute of Physics, New York, pp. 15ff, and references therein.Google Scholar
  6. Curie, I., and Joliot, F. (1934).Comptes Rendus de l'Académie des Science,198, 254.Google Scholar
  7. Darling, T. W., Rossi, F., Opat, G. I., and Moorhead, G. F. (1992).Reviews of Modern Physics,64, 237, and references therein.Google Scholar
  8. Debenedetti, S., Cowan, C. E., Konnecker, W. R., and Primakoff, H. (1950).Physical Review,77, 205.Google Scholar
  9. Dirac, P. A. M. (1928a).Proceedings of the Royal Society A,117, 610.Google Scholar
  10. Dirac, P. A. M. (1928b).Proceedings of the Royal Society A,118, 351.Google Scholar
  11. Dirac, P. A. M. (1931).Proceedings of the Royal Society A,133, 60.Google Scholar
  12. Dirac, P. A. M. (1958).The Principles of Quantum Mechanics, 4th ed., Oxford University Press, Oxford.Google Scholar
  13. Einstein, A. (1921). Stafford Little Lectures, Princeton University, May 1921 [reprinted in A. Einstein,The Meaning of Relativity, 5th ed., Princeton University Press, Princeton, New Jersey (1956)].Google Scholar
  14. Fairbank, W. M., Witteborn, F. C., and Knight, L. V. (1964).Science,144, 252.Google Scholar
  15. Forward, R. L. (1961).Proceedings IRE,49, 892.Google Scholar
  16. Freedman, W. L.,et al. (1994).Nature,371, 757.Google Scholar
  17. Gabrielse, G., Rolston, S. L., Haarsma, L., and Keils, W. (1988).Physics Letters A,129, 38.Google Scholar
  18. Gabrielse, G., Fei, X., Orozco, L. A., Tjoelker, R. L., Haas, J., Kalinowsky, H., Trainor, T. A., and Keils, W. (1990).Physical Review Utters,65, 1317.Google Scholar
  19. Goldman, T., and Nieto, M. M. (1982).Physics Letters,112B, 437.Google Scholar
  20. Good, M. L. (1961).Physical Review,121, 311.Google Scholar
  21. Harrison, W. A. (1979).Solid State Theory, Dover, New York.Google Scholar
  22. Heisenberg, W. (1931).Annalen der Physik,10, 888.Google Scholar
  23. Heitler, W. (1954).The Quantum Theory of Radiation, 3rd ed., Dover, New York.Google Scholar
  24. Hoyle, F., and Narlikar, J. V. (1974).Action at a Distance in Physics and Cosmology, Freeman, San Francisco, esp. Chapter 9.Google Scholar
  25. Islam, J. N. (1992).An Introduction to Mathematical Cosmology, Cambridge University Press, Cambridge.Google Scholar
  26. Jacoby, G. (1994).Nature,371, 741.Google Scholar
  27. Kaku, M. (1993).Quantum Field Theory, Oxford University Press, Oxford, Chapter 19, Quantum Gravity.Google Scholar
  28. Kittel, C. (1971).Introduction to Solid State Physics, 4th ed., Wiley, New York, esp. Chapter 10.Google Scholar
  29. Kramers, H. A. (1964).Quantum Mechanics, Dover, New York.Google Scholar
  30. Lamb, W. E., and Retherford, R. C. (1957).Physical Review,72, 241.Google Scholar
  31. Madelung, O. (1978).Introduction to Solid State Theory, Springer-Verlag, Berlin, esp. Chapter 2.Google Scholar
  32. Mattuck, R. D. (1976).A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed., Dover, New York.Google Scholar
  33. McGervey, J. D. (1971).Modern Physics, Academic Press, New York.Google Scholar
  34. Messiah, A. (1968).Quantum Mechanics, North-Holland, Amsterdam.Google Scholar
  35. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, Freeman, San Francisco.Google Scholar
  36. Morrison, P., and Gold, T. (1957).Essays on Gravity, Gravity Research Foundation, New Boston, New Hampshire. Cited in Morrison (1958).Google Scholar
  37. Morrison, P. (1958).American Journal of Physics,26, 358.Google Scholar
  38. Nieto, M. M., and Goldman, T. (1991).Physics Reports,205, 221.Google Scholar
  39. Peebles, P. J. E. (1993).Principles of Physical Cosmology, Princeton University Press, Princeton, New Jersey.Google Scholar
  40. Pierceet al., M. J. (1994).Nature,371, 385.Google Scholar
  41. Pirenne, J. (1946).Archives des Sciences Physiques et Naturelles,28, 233.Google Scholar
  42. Pirenne, J. (1947).Archives des Sciences Physiques et Naturelles,29, 121, 207.Google Scholar
  43. Ross, D. K. (1983).Journal of Physics A,16, 1331.Google Scholar
  44. Schiff, L. I. (1958).Physical Review Letters,1, 254.Google Scholar
  45. Schiff, L. I. (1959).Proceedings of the National Academy of Sciences of the USA,45, 69.Google Scholar
  46. Schiff, L. I. (1968).Quantum Mechanics, 3rd ed., McGraw-Hill Kogakusha, Tokyo.Google Scholar
  47. Wachs, A. L.,et al. (1989).Physica C,162–164, 1375.Google Scholar
  48. Weinberg, S. (1972).Gravitation and Cosmology, Wiley, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Mark Kowitt
    • 1
  1. 1.Precision Therapy InternationalUSA

Personalised recommendations