The statistical zap versus the shotgun approach

  • James C. Brower
  • Julia Veinus
Article

Abstract

Multivariate analysis is used in the search for one or more types of structure. The statistical zap applies a single method to determine one preselected type of structure. Several zaps suffice to ascertain several types of structure. The statistical shotgun represents an alternative approach. Here, a series of methods is applied to the data with the intent of ascertaining all possible types of structure that may exist. If strong structure is present, an appropriate zap will probably reveal it, and a variety of techniques will determine the same general structure. If only the main structure is required, the zap is adequate. In this situation, the shotgun will display a basic consistency which is at least reassuring. However, zaps may fail to detect a more subtle secondary structure of geological interest which will be displayed by the shotgun. For weakly structured data, a zap will only determine one type of structure but the shotgun reveals all. Study of the ontogeny of Parastylonurus myops(Clarke), a Lower Silurian eurypterid from New York (USA) shows the virtues of the statistical shotgun.

Key words

canonical correlation cluster analysis correlation discriminant analysis factor analysis multivariate analysis numerical taxonomy principal coordinates regression analysis statistics allometry eurypterids integration and coordination ontogeny paleontology relative growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, H. E., Brower, J. C., Gould, S. J., and Reyment, R. A., 1974, Growth and variation inEurypterus remipes DeKay: Geol. Inst. Univ. Uppsala Bull., n.s., v. 4, no. 6, p. 81–114.Google Scholar
  2. Blackith, R. E., and Reyment, R. A., 1971, Multivariate morphometrics: Academic Press, London and New York, 412 p.Google Scholar
  3. Brower, J. C., 1973, Ontogeny of a Miocene pelecypod: Jour. Math. Geology, v. 5, no. 1, p. 73–90.Google Scholar
  4. Clarke, J. M., 1907, TheEurypterus Shales of the Shawangunk Mountains in eastern New York: New York State Mus. Bull. 107, p. 295–310.Google Scholar
  5. Clarke, J. M., and Ruedemann, R., 1912, The Eurypterida of New York: New York State Mus. Mem. 14, 628 p.Google Scholar
  6. Davis, J. C., 1973, Statistics and data analysis in geology: John Wiley & Sons, Inc., New York, 550 p.Google Scholar
  7. Dixon, W. J., ed., 1970a, BMD Biomedical computer programs: Univ. Calif. Publ. in Automatic Computation, No. 2 (2nd ed.), 600 p.Google Scholar
  8. Dixon, W. J., ed., 1970b, BMD Biomedical computer programs, X-series supplement: Univ. Calif. Publ. in Automatic Computation, No. 3, 260 p.Google Scholar
  9. Gould, S. J., 1967, Evolutionary patterns in pelycosaurian reptiles: a factor-analytic study: Evolution, v. 21, no. 2, p. 385–401.Google Scholar
  10. Gould, S. J., and Littlejohn, J., 1973, Factor analysis of caseid pelycosaurs: Jour. Paleontology, v. 47, no. 5, p. 886–891.Google Scholar
  11. Harman, H. H., 1967, Modern factor analysis (2nd ed.): Univ. Chicago Press, Chicago and London, 474 p.Google Scholar
  12. Hunt, A. S., 1967, Growth, variation and instar development of an agnostid trilobite: Jour. Paleontology, v. 41, no. 1, p. 203–208.Google Scholar
  13. Kesling, R. V., 1951, The morphology of ostracod molt stages: Illinois Biol. Mon., v. 21, no. 1–3, 324 p.Google Scholar
  14. Kesling, R. V., 1952, Doubling in size of ostracod carapaces in each molt stage: Jour. Paleontology, v. 26, no. 5, p. 772–780.Google Scholar
  15. Kesling, R. V., 1953, A slide rule for the determination of instars in ostracod species: Contr. Mus. Paleontology, Univ. Michigan, v. 11, no. 5, p. 97–109.Google Scholar
  16. Morrison, D. F., 1967, Multivariate statistical methods: McGraw-Hill Book Co., New York, 338 p.Google Scholar
  17. Ondrick, C. W., and Srivastava, G. S., 1970, CORFAN-FORTRAN IV computer program for correlation, factor analysis (R- and Q-mode) and varimax rotation: Kansas Geol. Survey Computer Contr. 42, 92 p.Google Scholar
  18. Parks, J. M., 1970, FORTRAN IV program for Q-mode cluster analysis on distance function with printed dendrogram: Kansas Geol. Survey Computer Contr. 46, 32 p.Google Scholar
  19. Palmer, A. R., 1957, Ontogenetic development of two olenellid trilobites: Jour. Paleontology, v. 31, no. 1, p. 105–128.Google Scholar
  20. Palmer, A. R., 1962, Comparative ontogeny of some opisthoparian, gonatoparian and proparian Upper Cambrian trilobites: Jour. Paleontology, v. 36, no. 1, p. 87–96.Google Scholar
  21. Passano, L. M., 1960, Molting and its control,in The physiology of Crustacea, v. I, Metabolism and growth: Academic Press, New York, p. 473–536.Google Scholar
  22. Przibram, H., 1931, Connecting laws of animal morphology: Four lectures held at the University of London, March, 1929: London Univ. Press, London, 62 p.Google Scholar
  23. Reyment, R. A., 1960, Studies on Upper Cretaceous and Lower Tertiary Ostracoda: Part I, Senonian and Maestrichtian Ostracoda: Stockholm Contr. Geol. 7, 238 p.Google Scholar
  24. Reyment, R. A., 1963, Studies on Nigerian Upper Cretaceous and Lower Tertiary Ostracoda: Part II, Danian, Paleocene and Eocene Ostracoda: Stockholm Contr. Geol. 10, 286 p.Google Scholar
  25. Reyment, R. A., 1972, Application of multivariate morphometrics in paleontology: Intern. Geol. Cong., 24th Sess., sect. 7, Paleontology, p. 238–245.Google Scholar
  26. Reyment, R. A., 1974, The age of zap: Syracuse Univ., Geol. Contr. 2, in press.Google Scholar
  27. Robison, R. A., 1967, Ontogeny ofBathyriscus fimbriatus and its bearing on affinities of corynexochid trilobites: Jour. Paleontology v. 41, no. 1, p. 213–231.Google Scholar
  28. Seal, H., 1964, Multivariate statistical analysis for biologists. Methuen and Co., London, 209 p.Google Scholar
  29. Sneath, P. H. A., and Sokal, R. R., 1973, Numerical taxonomy, the principles and practice of numerical classification: W. H. Freeman and Co., San Francisco, 573 p.Google Scholar
  30. Van de Geer, J. P., 1971, Introduction to multivariate analysis for the social sciences: W. H. Freeman and Co., San Francisco, 293 p.Google Scholar
  31. Veldman, D. J., 1967, FORTRAN programming for the behavioral sciences: Holt, Rinehart and Winston Inc., New York, 406 p.Google Scholar
  32. Whittington, H. B., 1957, The ontogeny of trilobites: Biol. Reviews, v. 32, no. 4, p. 421–469.Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • James C. Brower
    • 1
  • Julia Veinus
    • 1
  1. 1.Department of GeologySyracuse UniversityUSA

Personalised recommendations