International Journal of Theoretical Physics

, Volume 23, Issue 1, pp 27–60 | Cite as

Critical comments on the discussion about tachyonic causal paradoxes and on the concept of superluminal reference frame

  • Jerzy Klemens Kowalczyński


The discussions of the tachyonic causal paradoxes and the concept of superluminal reference frame are criticized. The essence of the construction of the known paradoxes is revealed. Some possibilities of eliminating these paradoxes without contradicting the theory of relativity, are discussed. The tachyonic causal loop in an arbitrarily dimensional flat space-time is formally defined. The logical relations between assumptions on existence (or nonexistence) of the tachyonic causal loops and of inertial reference frames preferred in the tachyon kinematics are given. Such frames are not preferred in relation to bradyons and luxons, and maybe are not preferred in the dynamics of the tachyons. The theorem is proved which shows that the discussion on the tachyonic causal loops concerns also the preferred frames. The operational definitions of spacelike, timelike, and null vectors are given. It is shown that superluminal transformations and reference frames do not exist inside the theory of relativity. It is also shown that the so-called superluminal Lorentz transformations are not in fact transformations but mappings. It is concluded that the existence of tachyonic phenomena is not contradictory to the theory of relativity, while the concept of usual superluminal reference frame is contradictory to that theory.


Field Theory Elementary Particle Quantum Field Theory Reference Frame Operational Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barashenkov, V. S. (1976).Nukleonika,21, 841.Google Scholar
  2. Barrowes, S. C. (1977).Foundations of Physics,7, 617.Google Scholar
  3. Basano, L. (1977).International Journal of Theoretical Physics,16, 715.Google Scholar
  4. Basano, L. (1980).Foundations of Physics,10, 937.Google Scholar
  5. Benford, G. A., Book, D. L., and Newcomb, W. A. (1970).Physical Review D,2, 263.Google Scholar
  6. Bilaniuk, O. M., Brown, S. L., DeWitt, B., Newcomb, W. A., Sachs, M., Sudarshan, E. C. G., and Yoshikawa, S. (1969)Physics Today,22 (12), 47 (December 1969).Google Scholar
  7. Bilaniuk, O. M. P., Deshpande, V. K., and Sudarshan, E. C. G. (1962).American Journal of Physics,30, 718.Google Scholar
  8. Bohm, D. (1965).The Special Theory of Relativity, pp. 156–158. W. A. Benjamin, New York.Google Scholar
  9. Caldirola, P., Maccarrone, G. D., and Recami, E. (1980).Lettere al Nuovo Cimento,29, 241.Google Scholar
  10. Carter, B. (1968).Physical Review,174, 1559.Google Scholar
  11. Csonka, P. L. (1969).Physical Review,180, 1266.Google Scholar
  12. Csonka, P. L. (1970).Nuclear Physics B,21, 436.Google Scholar
  13. Ehlers, J., and Kundt, W. (1963). InGravitation: an Introduction to Current Research, L. Witten, ed., p. 74. J. Wiley and Sons, New York.Google Scholar
  14. Einstein, A. (1956).The Meaning of Relativity, p. 30. Princeton University Press, Princeton, New Jersey.Google Scholar
  15. Everett, A. E. (1976).Physical Review D,13, 785.Google Scholar
  16. Feinberg, G. (1967).Physical Review,159, 1089, Appendixes A and B.Google Scholar
  17. Feldman, L. M. (1974).American Journal of Physics,42, 179.Google Scholar
  18. Gilson, J. G. (1968).Mathematical Gazette,52, 162.Google Scholar
  19. Gödel, K. (1949).Reviews of Modern Physics,21, 447.Google Scholar
  20. Golab, S. (1974).Tensor Calculus. Elsevier Scientific, Amsterdam, PWN, Warszawa.Google Scholar
  21. Goldoni, R. (1973).Nuovo Cimento,14A, 501.Google Scholar
  22. Goldoni, R. (1978).Lettere al Nuovo Cimento,21, 333, and references therein.Google Scholar
  23. Imaeda, K. (1979).Nuovo Cimento,50B, 271.Google Scholar
  24. Jones, R. T. (1963).Journal of Franklin Institute,275, 1.Google Scholar
  25. Kowalczyński, J. K. (1979).Physics Letters,74A, 157.Google Scholar
  26. Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. (1980).Exact Solutions of Einstein's Field Equations, Chap. 2. VEB, Berlin.Google Scholar
  27. Lee, A. R., and Kalotas, T. M., (1977).Nuovo Cimento,41B, 365.Google Scholar
  28. Lord, E. A., and Shankara, T. S. (1977).Foundations of Physics,7, 459.Google Scholar
  29. Marchildon, L., Everett, A. E., and Antippa, A. F., (1979).Nuovo Cimento,53B, 253, and references therein, especially A. F. Antippa,Physical Review D,11, 724 (1975).Google Scholar
  30. Mariwalla, K. H., (1969).American Journal of Physics,37, 1281.Google Scholar
  31. Maund, J. B., (1979).Foundations of Physics,9, 557.Google Scholar
  32. Mignani, R., and Recami, E., (1974).Lettere al Nuovo Cimento,9, 357.Google Scholar
  33. Mignani, R., and Recami, E., (1976).Lettere al Nuovo Cimento,16, 449.Google Scholar
  34. Misner, C. W., Thorne, K. S., and Wheeler, J. A., (1973).Gravitation, pp. 207, 217, and 1267. W. H. Freeman and Co., San Francisco.Google Scholar
  35. Naranan, S., (1972).Lettere al Nuovo Cimento,3, 623.Google Scholar
  36. Newman, E. T., (1973).Journal of Mathematical Physics,14, 774.Google Scholar
  37. Newton, R. G., (1967).Physical Review,162, 1274.Google Scholar
  38. Parker, L. (1969).Physical Review,188, 2287.Google Scholar
  39. Parmentola, J. A., and Yee, D. D. H., (1971).Physical Review D,4, 1912.Google Scholar
  40. Pavšič, M., (1981).Lettere al Nuovo Cimento,30, 111.Google Scholar
  41. Pavšič, M., Recami, E., and Ziino, G., (1976).Lettere al Nuovo Cimento,17, 257.Google Scholar
  42. Pirani, F. A. E., (1970).Physical Review D,1, 3224.Google Scholar
  43. Plebański, J. (1970).Lectures on Non-Linear Electrodynamics, Sections 8 and 9, especially pp. 67 and 68. NORDITA, Copenhagen.Google Scholar
  44. Plebański, J. F., (1977).Journal of Mathematical Physics,18, 2511.Google Scholar
  45. Ramon, C., and Rauscher, E. A., (1980).Foundations of Physics,10, 661.Google Scholar
  46. Ray, D., (1979).Physics Letters,73A, 4.Google Scholar
  47. Recami, E., (1978). InTachyons, Monopoles, and Related Topics, E. Recami, ed., North-Holland, Amsterdam.Google Scholar
  48. Recami, E., and Mignani, R., (1974).Rivista del Nuovo Cimento della Societa Italiana di Fisica,4, 209.Google Scholar
  49. Recami, E., and Ziino, G. (1976).Nuovo Cimento,33A, 205.Google Scholar
  50. Rolnick, W. B., (1969).Physical Review,183, 1105.Google Scholar
  51. Root, R. G., and Trefil, J. S., (1970).Lettere al Nuovo Cimento,3, 412.Google Scholar
  52. Rózga, K. (1977).Reports on Mathematical Physics,11, 197.Google Scholar
  53. Schulman, L. S., (1971).American Journal of Physics,39, 481.Google Scholar
  54. Spinelli, G., (1979).Lettere al Nuovo Cimento,26, 282.Google Scholar
  55. Synge, J. L., (1964).Relativity: the General Theory, Chap. III, Section 5. North-Holland, Amsterdam.Google Scholar
  56. Synge, J. L. (1965).Relativity: the Special Theory. North-Holland, Amsterdam.Google Scholar
  57. Tolman, R. C., (1917).The Theory of Relativity of Motion, pp. 54 and 55. University of California Press, Berkeley, California.Google Scholar
  58. Wheeler, J. A., and Feynman, R. P., (1949).Reviews of Modern Physics,21, 425.Google Scholar
  59. Yaccarini, A. (1974).Lettere al Nuovo Cimento,9, 354.Google Scholar
  60. Ziino, G., (1979a).Physics Letters,70A, 87.Google Scholar
  61. Ziino, G., (1979b).Lettere al Nuovo Cimento,24, 171.Google Scholar
  62. Ziino, G., (1980).Lettere al Nuovo Cimento,29, 263.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Jerzy Klemens Kowalczyński
    • 1
  1. 1.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations