Advertisement

International Journal of Theoretical Physics

, Volume 22, Issue 12, pp 1067–1089 | Cite as

Physical constants as cosmological constraints

  • Saul -Paul Sirag
Article

Abstract

A solution to the primary “missing mass” problem is found in the context of accounting for the coincidence of large dimensionless numbers first noticed by Weyl, Eddington, and Dirac. This solution entails (1) a log2 relation between the electromagnetic and gravitational coupling constants; (2) setting the maximum radius of curvature at the gravitational radius, 2GM/c2; (3) a changing gravitational parameterG, which varies as an inverse function of the universal radius of curvature. These features motivate the development of a neo-Friedmann formalism, which employs a function,ε(χ). governing the change from Euclidian to non-Euclidian volumes. Observational consequences include (1) a universal density of 7.6×10−31g cm−3, (2) a Hubble parameter of 15 km s−1 Mpc−1, (3) an age of the universe of 32×109 yr, (4) a gravitational parameter diminishing at a current rate of 2.2×10−12 yr−1, and (5) a deceleration parameter of 1.93. Moreover, it is shown that for a Friedmann-type (λ=0) cosmology (whether open or closed) any deceleration parameter will be represented by a straight line in the (log-log) red shift: luminosity-distance space of the Hubble diagram. The major claim of this paper is that we have devised a model in which the large-scale structure of the universe is completely determined by the values of the fundamental physical constants:c, h, e, andme setting the scale, andG selecting the epoch.

Keywords

Inverse Function Hubble Parameter Deceleration Parameter Physical Constant Dimensionless Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, M., Mould, J., Huchra, J., Sullivan III, W. T., Schommer, R. A., and Bothun, G. D. (1980).Astrophysical Journal,239, 12.Google Scholar
  2. Baldwin, J. A., Burke, W. L., Gaskell, C. M., and Wampler, E. J. (1978).Nature,273, 431.Google Scholar
  3. Bastin, T. (1971). InQuantum Theory and Beyond, Ted Bastin, ed., Cambridge University Press, London, p. 213.Google Scholar
  4. Burger, T. J. (1978).Nature,271, 402.Google Scholar
  5. Canuto, V. M. (1979).New Scientist,81, 856.Google Scholar
  6. Cohen, E. R., and Taylor, B. N. (1973).Journal of Physical Chemical Reference Data,2 (4), 663.Google Scholar
  7. Dirac, P. A. M. (1937).Nature,139, 323.Google Scholar
  8. Eddington, A. S. (1924).The Mathematical Theory of Relativity, 2nd ed., Cambridge University Press, Cambridge, p. 157.Google Scholar
  9. Eddington, A. S. (1935).New Pathways in Science, Cambridge University Press, Cambridge, p. 229.Google Scholar
  10. Eddington, A. S. (1936).Relativity Theory of Protons and Electrons, Cambridge University Press, Cambridge, p. 212.Google Scholar
  11. Eddington, A. S. (1946).Fundamental Theory, Cambridge University Press, Cambridge, p. 265.Google Scholar
  12. Field, G. B. (1976). InFrontiers of Astrophysics, Eugene H. Avrett, ed., Harvard University Press, Cambridge, Massachusetts, p. 223.Google Scholar
  13. Giacconi, R. (1980).Scientific American,242 (2), 80.Google Scholar
  14. Harrison, E. R. (1972).Physics Today 25 (12), 30.Google Scholar
  15. Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, p. 117.Google Scholar
  16. Hubble, E. (1929).Proceedings of the National Academy of Science US,15, 169.Google Scholar
  17. Kristian, J., Sandage, A., and Westphal, J. A. (1978).Astrophysical Journal,221, 383.Google Scholar
  18. Lang, S. (1970).Algebra, Addison-Wesley, Reading, Massachusetts, p. 367.Google Scholar
  19. McElhinny, M. W., Taylor, S. R., and Stevenson, D. J. (1978).Nature,271, 316.Google Scholar
  20. Mathews, G. J., and Viola Jr., V. E. (1979).Astrophysical Journal,228, 375.Google Scholar
  21. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, Freeman, San Francisco, pp. 417, 705, 851.Google Scholar
  22. Reines, F., Sobel, H. W., and Pasierb, E. (1980).Physical Review Letters,45, 1307.Google Scholar
  23. Salam, A. (1970). International Center for Theoretical Physics, Trieste, Preprint IC/70/1906.Google Scholar
  24. Sandage, A. R. (1970).Physics Today,23 (2), 34.Google Scholar
  25. Sandage, A. (1972).Astrophysical Journal,178, 1.Google Scholar
  26. Sandage, A. (1975). InGalaxies and the Universe, Vol. IX ofStars and Stellar Systems, Allan Sandage, Mary Sandage and Jerome Kristian, eds., University of Chicago Press, Chicago, p. 761.Google Scholar
  27. Sandage, A., and Tammann, G. A. (1976).Astrophysical Journal,210, 7.Google Scholar
  28. Sirag, S.-P. (1977).Nature,268, 254.Google Scholar
  29. Tammann, G. A. (1979). InScientific Research with the Space Telescope, NASA CP-2111, M. S. Longair and J. W. Warner, eds., U.S. Government Printing Office, Washington, D. C., p. 263.Google Scholar
  30. Vaucouleurs, G., and Bollinger, G. (1979).Astrophysical Journal,233, 433.Google Scholar
  31. Weinberg, S. (1972),Gravitation and Cosmology, Wiley, New York, p. 405.Google Scholar
  32. Wesson, P. S. (1980).Physics Today,33 (7), 32.Google Scholar
  33. Weyl, H. (1949).Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton, New Jersey, p. 289.Google Scholar
  34. Weyl, H. (1952).Space Time Matter, Dover, New York, p. 273.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Saul -Paul Sirag
    • 1
  1. 1.Washington Research CenterSan Francisco

Personalised recommendations