Journal of Mammalian Evolution

, Volume 3, Issue 4, pp 315–326 | Cite as

Phylogenetic analysis of the perissodactylan family Tapiridae using mitochondrial cytochromec oxidase (COII) sequences

  • Mary V. Ashley
  • Jane E. Norman
  • Larissa Stross


The four extant members of the family Tapiridae have a disjunct, relictual distribution, with three species being Neotropical (Tapirus bairdii, T. terrestris, andT. pinchaque) and one found in Southeast Asia (T. indicus). Little recent work on tapir systematics have appeared, and no molecular studies of this group have been published. A phylogenetic analysis was undertaken using sequences of the mitochondrial cytochromec oxidase subunit II gene (COII) from representatives of the four species of tapirs, as well as a representative outgroup,Equus caballus. Analyses of the COII sequences indicate a close relationship between the two South American species of tapirs,T. terrestris andT. pinchaque, and estimates of divergence dates using rates of COII evolution are compatible with migration of a single tapir lineage into South America following the emergence of the isthmus of Panama, about 3 million years bp. Various methods of analysis, including maximum parsimony, maximum likelihood, and neighbor-joining, provided poorer resolution of other tapir relationship. The COII data suggest that three distinct tapir mitochondrial lineages, a South American (represented byT. terrestris andT. pinchaque), a Central American (represented byT. bairdii), and an Asian (represented byT. indicus) diverged relatively rapidly, 20–30 million years bp. Another goal of this study was to calibrate the rate of COII evolution in a eutherian mammal group which has a good fossil record, such as perissodactyls, to estimate accurately the rate of COII evolution in a nonprimate mammalian group. The rate of COII evolution in equids and tapirs has been relatively constant and, using corrected distances, calibrated to be approximately 0.22% lineage/million years. This rate is three-to fourfold lower than that of hominoid primates.

Key Words

Tapiridae Perissodactyla cytochromec oxidase subunit II molecular evolutionary rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adkins, R. M., and Honeycutt, R. L. (1994). Evolution of the primate cytochromec oxidase subunit II gene.J. Mol. Evol. 38: 215–231.PubMedGoogle Scholar
  2. Amato, G. D., Ashley, M. V., and Gatesy, J. (1993). Molecular evolution inliving species of rhinoceros: Implications for conservation. In:Proceedings of an International Conference: Rhinoceros Biology and Conservation, O. A. Ryder, eds., pp. 114–122, Zoological Society of San Diego.Google Scholar
  3. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290: 457–465.PubMedGoogle Scholar
  4. Anderson, W., De Bruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochrondrial DNA: Conserved features of the mammalian mitochondrial genome.J. Mol. Biol. 156: 683–717.PubMedGoogle Scholar
  5. Ashley, M. V., and Vaughn, J. L. (1995). Owl monkeys (Aotus) are highly divergent in mitochondrial cytochromec oxidase (COII) sequences.Int. J. Primatal. 16: 793–806.Google Scholar
  6. Ashley, M. V., Melnick, D. J., and Western, D. (1990). Conservation genetics of the black rhinoceros (Diceros bicornis). I. Evidence from the mitochondrial DNA of three populations.Conserv. Biol. 4: 71–77.Google Scholar
  7. Baba, M. L., Darga, L. L., Goodman, M., and Czelusniak, J. (1981). Evolution of cytochromec investigated by the maximum parsimony method.J. Mol. Evol. 17: 197–213.PubMedGoogle Scholar
  8. Bremer, K. (1994). Branch support and tree stability.Cladistics 10: 295–304.Google Scholar
  9. Brown, G. G., and Simpson, M. V. (1982). Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes.Proc. Natl. Acad. Sci. USA 79: 3246–3250.PubMedGoogle Scholar
  10. Cann, R. L., Brown, W. M., and Wilson, A. C. (1984). Polymorphic sites and the mechanism of evolution in human mitochondrial DNA.Genetics 106: 479–499.PubMedGoogle Scholar
  11. Capraldi, R. A. (1990). Structure and function of cytochromec oxidase.Annu. Rev. Biochem. 59: 569–596.PubMedGoogle Scholar
  12. Disotell, T. R., Honeycutt, R. L., and Ruvolo, M. (1992). Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini.Mol. Biol. Evol. 9: 1–13.PubMedGoogle Scholar
  13. Donaghue, M. J., Olmstead, R. G., Smith, J. F., and Palmer, J. D. (1992). Phylogenetic relationships of Dipsacales based onrbcL sequences.Ann. Mo. Bot. Gard. 79: 333–345.Google Scholar
  14. Douzery, E., and Catzeflis, F. M. (1995). Molecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia).J. Mol. Evol. 41: 622–636.PubMedGoogle Scholar
  15. Eisenberg, J. F., Groves, C. P., and MacKinnon, K. (1987). Tapire. In:Grzimeks Enzyklopadie, W. Keienburg, ed., Vol. 4, pp. 598–608, Kindler Verlag, Munich.Google Scholar
  16. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach.J. Mol. Evol. 17: 368–376.PubMedGoogle Scholar
  17. Felsenstein, J. (1993).PHYLIP (Phylogeny Inference Package). Version 3.5c, University of Washington, Seattle.Google Scholar
  18. Flint, J., Taylor, A. M., and Clegg, J. B. (1988). Structure and evolution of the horse ξ globin lucus.J. Mol. Biol. 199: 427–437.PubMedGoogle Scholar
  19. Flint, J., Ryder, O. A., and Clegg, J. B. (1990). Comparison of the α-globin gene cluster structure in Perissodactyla.J. Mol. Evol. 30: 36–42.Google Scholar
  20. George, M., and Ryder, O. A. (1986). Mitochondrial DNA evolution in the genusEquus.Mol. Biol. Evol. 3: 535–546.PubMedGoogle Scholar
  21. Hershkovitz, P. (1954). Mammals of Northern Colombia, Prelimimary Report No. 7: Tapirs (genusTapirus), with a systematic review of American species.Proc. U. S. Natl. Mus. Smith. Inst. 103: 465–496.Google Scholar
  22. Honeycutt, R. L., Nedbal, M. A., Adkins, R. M., and Janecek, L. L. (1995). Mammalian mitochondrial DNA evolution: A comparison of the cytochromeb and cytochromec oxidase II genes.J. Mol. Evol. 40: 260–272.PubMedGoogle Scholar
  23. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32: 128–144.PubMedGoogle Scholar
  24. Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H., and Saitou, N. (1995). Mitochondrial DNA sequences of various species of the genusEquus with special reference to the phylogenetic relationship between Przewalskii's wild horse and domestic horse.J. Mol. Evol. 41: 180–188.PubMedGoogle Scholar
  25. Jama, M., Zhang, Y., Aman, R. A., and Ryder, O. A. (1993). Sequence of the mitochondrial control region, trRNATHR, tRNAPRO and tRNAPHE genes from the black rhinoceros,Diceros bicornis.Nucleic Acids Res. 21: 4392.PubMedGoogle Scholar
  26. Kurten, B., and Anderson, E. (1980).Pleistocene Mammals of North America, Columbia University Press, New York.Google Scholar
  27. Luntz, T. L., and Margoliash, E. (1988). An amino acid sequence region of subunit II of cytochrome oxidase which may be responsible for evolutionary changes in reactivity with different cytochromesc. In:Cytochrome Systems: Molecular Biology and Bioenergetics, S. Papa, B. Changes, and L. Ernster, eds., pp. 271–279, Plenum, New York.Google Scholar
  28. MacFadden, B. J. (1992).Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae, Cambridge University Press, Cambridge.Google Scholar
  29. Maddison, W. P., and Maddison, D. R. (1992).MacClade. Sinauer Associates, Sunderland, MA.Google Scholar
  30. Merenlender, A. M., Woodruff, D. S., Ryder, O. A., Kock, R., and Vahala, J. (1989). Allozyme variation and differentiation in African and Indian rhonoceroses.J. Hered. 80: 377–381.PubMedGoogle Scholar
  31. Morales, J. C., and Melnick, D. J. (1994). Molecular systematics of the living rhinoceros.Mol. Phylo. Evol. 3: 128–134.Google Scholar
  32. Nowak, R. M. (1991).Walker's Mammals of the World, Vol. II, 5th ed., John Hopkins University Press, Baltimore.Google Scholar
  33. O'Ryan, C., and Harley, E. H. (1993). Comparisons of mitochondrial DNA in black and white rhinoceroses.J. Mammal. 74: 343–346.Google Scholar
  34. Osheroff, N., Speck, S. H., Margoliash, E., Veerman, E. C. I., Wilms, J., Konig, B. W., and Muijsers, A. O. (1983). The reaction of primate cytochromesc with cytochromec oxidase.J. Biol. Chem. 258: 5731–5738.PubMedGoogle Scholar
  35. Porter, C. A., Goodman, M., and Stanhope, M. J. (1996). Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene.Mol. Phylogenet. Evol. 5: 89–101.PubMedGoogle Scholar
  36. Prothere, D. R., and Schoch, R. M. (eds.) (1989).The Evolution of Perissodactyls, Clarendon Press, New York.Google Scholar
  37. Ramharack, R., and Deeley, R. G. (1987). Structure and evolution of primate cytochromec oxidase subunit II gene.J. Biol. Chem. 262: 14014–14021.PubMedGoogle Scholar
  38. Ray, C. E., and Sanders, A. E. (1984). Pleistocene tapirs in the Eastern United States. In:Contributions in Quaternary Vertebrate Paleontology: A Volume in Memorial to John E. Guilday, H. H. Genoways and M. R. Dawson, eds., Vol. 8, pp. 283–315, Spec. Publ. Carnegie Mus. Nat. Hist.Google Scholar
  39. Ruvolo, M., Zehr, S., von Dornum, M., Pan, D., Chang, B., and Lin, J. (1993). Mitochondrial COII sequences and modern human origins.Mol. Biol. Evol. 10: 1115–1135.PubMedGoogle Scholar
  40. Ruvolo, M., Disotell, T. R., Allard, M. W., Brown, W. M., and Honeycutt, R. L. (1991). Resolution of the African hominoid tricotomy by use of a mitochondrial gene sequence.Proc. Natl. Acad. Sci. USA 88: 1570–1574.PubMedGoogle Scholar
  41. Ryder, O. A., and Chemnick, L. G. (1990). Chromosomal and molecular evolution in Asiatic wild asses.Genetica 83: 67–72.PubMedGoogle Scholar
  42. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.PubMedGoogle Scholar
  43. Sarich, V. M., and Wilson, A. C. (1967). Immunological time scale for hominid evolution.Science 158: 1200–1203.PubMedGoogle Scholar
  44. Schoch, R. M. (1989). A review of the tapiroids. In:The Evolution of Perissodactyls, D. R. Prothero and R. M. Schoch, Eds., pp. 299–320, Oxford University Press, New York.Google Scholar
  45. Swofford, D. L. (1991).PAUP: Phylogenetic Analysis Using Parsimony, Illinois Natural History Survey, Champaign.Google Scholar
  46. Taha, T. S. M., and Ferguson-Miller, S. (1992). Interaction of cytochromec with cytochromec oxidase studied by monoclonal antibodies and a protein modifying reagent.Biochemistry 31: 9090–9097.PubMedGoogle Scholar
  47. Tajima, F. (1993). Simple methods for testing the molecular evolutionary clock hypothesis.Genetics 135: 599–607.PubMedGoogle Scholar
  48. Wichman, H. A., Payne, C. T., Ryder, O. A., Hamilton, M. J., Maltbie, M., and Baker, R. J. (1991). Genomic distribution of heterochromatic sequences in equids: Implications to rapid chromosomal evolution.J. Hered. 82: 369–377.PubMedGoogle Scholar
  49. Xu, X., and Árnason, Ú. (1994). The complete mitochondrial DNA sequence of the horse,Equus caballus: Extensive heteroplasmy of the control region.Gene 148: 357–362.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Mary V. Ashley
    • 1
  • Jane E. Norman
    • 1
  • Larissa Stross
    • 1
  1. 1.Department of Biological Sciences M/C 066University of Illinois at ChicagoChicago

Personalised recommendations