Outgrowth of sympathetic adrenergic neurons in mice treated with a nerve-growth factor (NGF)

  • Lars Olson


Various tissues from mice treated with a nerve-growth factor (NGF) were studied with the histochemical technique ofFalck andHillarp, which visualizes the adrenergic transmitter in the sympathetic postganglionic neurons. Growth stimulation was detectable in all parts of the sympathetic adrenergic neurons. An increased density of the adrenergic ground plexus was observed in e.g. the iris, submaxillary and parotid glands, blood vessels and intramural ganglionic plexuses of the intestinal tract. Normally non-innervated tissues were also found to contain a considerable number of adrenergic terminals. Of special interest is the striking increase in number of adrenergic terminals in various types of autonomic ganglia, in all probability with an inhibitory effect on ganglionic transmission.


Blood Vessel Special Interest Parotid Gland Intestinal Tract Growth Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bueker, E. D.: Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat. Rec.102, 369–390 (1948).Google Scholar
  2. Burdman, J. A., andM. N. Goldstein: Synthesis and storage of a nerve growth protein in mouse submandibular glands. J. exp. Zool.160, 183–188 (1965).PubMedGoogle Scholar
  3. Caramia, F., P. U. Angeletti, andR. Levi-Montalcini: Experimental analysis of the mouse submaxillary salivary gland in relationship to its nerve-growth factor content. Endocrinology70, 915–922 (1962).PubMedGoogle Scholar
  4. Cegrell, L., B. Falck, andB. Hellman: Monoaminergic mechanisms in the endocrine pancreas. In: Structure and metabolism of the pancreatic islets, p. 429–435. Oxford: Pergamon Press 1964.Google Scholar
  5. Cohen, S.: Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proc. nat. Acad. Sci. (Wash.)46, 302–311 (1960).Google Scholar
  6. —, andR. Levi-Montalcini: A nerve growth-stimulating factor isolated from snake venom. Proc. nat. Acad. Sci. (Wash.)42, 571–574 (1956).Google Scholar
  7. Corrodi, H., u.N.-Å. Hillarp: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. I. Identifizierung der fluoreszierenden Produkte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd. Helv. chim. Acta46, 2425–2430 (1963).Google Scholar
  8. — —: Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. 2. Identifizierung des fluoreszierenden Produktes aus Dopamin und Formaldehyd. Helv. chim. Acta47, 911–918 (1964).Google Scholar
  9. —, andG. Jonsson: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines — A review on the methodology. J. Histochem. Cytochem.15, 65–78 (1967).Google Scholar
  10. Crain, S. M., andR. G. Wiegand: Catecholamine levels of mouse sympathetic ganglia following hypertrophy produced by salivary nerve-growth factor (26720). Proc. Soc. exp. Biol. (N.Y.)107, 663–665 (1961).Google Scholar
  11. Dahlström, A., andJ. Häggendal: Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta physiol. scand.67, 271–277 (1966).PubMedGoogle Scholar
  12. — —, andT. Hökfelt: The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta physiol. scand.67, 289–294 (1966).PubMedGoogle Scholar
  13. Edwards, D. C., E. L. Fenton, S. Kakari, B. J. Large, L. Papadaki, andE. Zaimis: Effects of nerve growth factor in new-born mice, rats and kittens. J. Physiol. (London)186, 10P-12P (1966).Google Scholar
  14. Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand.56, Suppl. 197, 1–24 (1962).Google Scholar
  15. —, andB. Hellman: Evidence for the presence of biogenic amines in pancreatic islets. Experientia (Basel)19, 139 (1963).Google Scholar
  16. —, andA. Torp: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354 (1962).Google Scholar
  17. —, andC. Owman: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund. II.7, 1–23 (1965).Google Scholar
  18. Goldstein, M. N., andJ. A. Burdman: Studies of the nerve growth factor in submandibular glands of female mice treated with testosterone. Anat. Rec.151, 199–208 (1965).PubMedGoogle Scholar
  19. Hamberger, B., R. Levi-Montalcini, K.-A. Norberg, andF. Sjöqvist: Monoamines in immunosympathectomized rats. Int. J. Neuropharmacol.4, 91–95 (1965).Google Scholar
  20. —, andCh. Sachs: Standardization of paraformaldehyde and of certain procedures for the histochemical demonstration of catecholamines. J. Histochem. Cytochem.13, 147 (1965).PubMedGoogle Scholar
  21. —, andK.-A. Norberg: Studies on some systems of adrenergic synaptic terminals in the abdominal ganglia of the cat. Acta physiol. scand.65, 235–242 (1965).PubMedGoogle Scholar
  22. Hammer, W., K.-A. Norberg, L. Olson, andF. Sjöqvist: Excessively growing monoamine-containing nerves in mice during treatment with a nerve growth factor (NGF). Acta physiol. scand.69, 127–128 (1967).PubMedGoogle Scholar
  23. Hillarp, N.-Å.: Structure of the synapse and the peripheral innervation apparatus of the autonomic nervous sytem. M. D. Thesis. Acta anat. (Basel), Suppl.4, 1–153 (1946).Google Scholar
  24. —: The construction and functional organization of the autonomic innervation apparatus. Acta physiol. scand.46, Suppl. 147, 1–38 (1959).Google Scholar
  25. Larsson, B., C. Owman, andF. Sundler: Monoaminergic mechanisms in parafollicular cells of the mouse thyroid gland. Endocrinology78, 1109–1114 (1966).PubMedGoogle Scholar
  26. Levi-Montalcini, R.: The nerve growth factor. Ann. N.Y. Acad. Sci.118, 149–170 (1964).PubMedGoogle Scholar
  27. —, andP. U. Angeletti: Biological properties of a nerve-growth promoting protein and its antiserum. In: Regional neurochemistry. Proc. Intern. Neurochem. Symp. IV (S. S. Kety andJ. Elkes, eds.), p. 362–371. New York: Pergamon Press 1960.Google Scholar
  28. — —: Growth control of the sympathetic system by a specific protein factor. Quart. Rev. Biol.36, 99–108 (1961).PubMedGoogle Scholar
  29. —, andB. Booker: Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc. nat. Acad. Sci. (Wash.)46, 373–384 (1960).Google Scholar
  30. —, andS. Cohen:In vitro andin vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc. nat. Acad. Sci. (Wash.)42, 695–699 (1956).Google Scholar
  31. — —: Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Ann. N.Y. Acad. Sci.85, 324–341 (1960).PubMedGoogle Scholar
  32. —, andV. Hamburger: Selective growth-stimulating effects of mouse sarcoma on the sensory and sympathetic nervous sytem of the chick embryo. J. expt. Zool.116, 321–362 (1951).Google Scholar
  33. — —: A diffusable agent of mouse sarcoma, producing hyperplasia of sympathetic ganglia and hyperneurotization of the chick embryo. J. expt. Zool.123, 233–288 (1953).Google Scholar
  34. —, andV. Hamburger: In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chich embryo. Cancer Res.14, 49–57 (1954).PubMedGoogle Scholar
  35. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand.64, Suppl. 248, 1–93 (1965).Google Scholar
  36. Norberg, K.-A.: Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int. J. Neuropharmacol.3, 379–382 (1964).Google Scholar
  37. —: Transmitter histochemistry of the sympathetic adrenergic nervous system. Brain Res.5, 125–169 (1967).PubMedGoogle Scholar
  38. —, andB. Hamberger: The sympathetic adrenergic neuron. Some characteristics revealed by histochemical studies on the intraneuronal distribution of the transmitter. Acta physiol. scand.63, Suppl. 238, 1–42 (1964).Google Scholar
  39. —, andL. Olson: Adrenergic innervation of the salivary glands in the rat. Z. Zellforsch.68, 183–189 (1965).PubMedGoogle Scholar
  40. —, andU. Ungerstedt: Histochemical studies on a special catecholamine-containing cell type in sympathetic ganglia. Acta physiol. scand.67, 260–270 (1966).PubMedGoogle Scholar
  41. —, andF. Sjöqvist: New possibilities for adrenergic modulation of ganglionic transmission. Pharmacol. Rev.18, 743–751 (1966).PubMedGoogle Scholar
  42. Olson, L.: Excessive growth of adrenergic nerves induced by a specific nerve growth-promoting protein. Acta physiol. scand.68, Suppl. 277, 153 (1966).Google Scholar
  43. Owman, C., andN. O. Sjöstrand: Short adrenergic neurons and catecholamine containing cells in vas deferens and accessory male genital glands of different mammals. Z. Zellforsch.66, 300–320 (1965).PubMedGoogle Scholar
  44. Weis, P., andE. D. Bueker: Ligation of mouse submandibular glands and its effect on components of nerve growth factor. Proc. Soc. expt. Biol. (N.Y.)121, 1136–1140 (1966).Google Scholar
  45. Winick, M., andR. E. Greenberg: Appearance and localization of a nerve growth-promoting protein during development. Pediatrics35, 221–228 (1965).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Lars Olson
    • 1
  1. 1.Department of HistologyKarolinska InstitutetStockholmSweden

Personalised recommendations