Microbial Ecology

, Volume 18, Issue 3, pp 275–284 | Cite as

Effect of chemical treatments on methane emission by the hindgut microbiota in the termiteZootermopsis angusticollis

  • Adam Catton Messer
  • Monica J. Lee


Selective removal of symbiotic hindgut microorganisms by chemical treatments reduced methane emission by the termiteZootermopsis angusticollis. Methane emission from untreated termites incubated in 25% H2 increased 123%, from 10.3 nmol/termite/hour (U) to 22.9 U. Though linear with time, methane emission was not correlated with termite mass. Hyperbaric oxygen treatments reduced methane emission to unquantifiable levels and eliminated all but the protozoaTricercomitus andHexamastix. Exogenous H2 restored 5% of methane emission to 1.3 U. 2-bromoethanesulfonic acid, fed on filter papers to termites, eliminated methane production. Epifluorescence microscopy showed that this treatment selectively removed methanogens from symbioses withTricercomitus, Hexamastix, andTrichomitopsis, but the protozoa did not appear to be affected. The insect molting hormone 20-hydroxyecdysone reduced methane production 86% to 1.6 U from an initial level of 11.4 U. Hydrogen incubation increased this rate to 77% of the initial rate, 8.8 U. Hormone treatment reduced the number ofTrichonympha in the hindgut and induced sexuality in these protozoa. A model suggests thatTrichonympha evolve most of the hydrogen and that methanogenic bacteria symbiotic withTrichomitopsis produce most of the methane in this hindgut ecosystem.


Methane Initial Rate Initial Level Chemical Treatment Hormone Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrew BJ (1930) Method and rate of protozoan refaunation in the termiteTermopsis angusticollis Hagen. Univ Cal Publ Zool 33:449–470Google Scholar
  2. 2.
    Bayon C, Etievant P (1980) Methanic fermentation in the digestive tract of a xylophagus insect:Orcyctes nasicornis L. larvae (Coleoptera: Scarabeidae). Experimentia 36:154–155CrossRefGoogle Scholar
  3. 3.
    Bracke JW, Cruden DL, Markovetz AJ (1978) Effect of metranidazole on the intestinal microflora of the American cockroachPeriplaneta americana L. Antimicrob Agents Chemother 13:115–120PubMedGoogle Scholar
  4. 4.
    Breznak J (1975) Symbiotic relationships between termites and their intestinal microbiota. In: Jennings DH, Lee DL (eds) Symbiosis (Society for Experimental Biology Symposium no. 29). Cambridge University Press, Cambridge, pp 559–580Google Scholar
  5. 5.
    Breznak JA, Switzer J (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630Google Scholar
  6. 6.
    Cleveland LR (1925) The effects of oxygenation and starvation on the symbiosis between the termite,Termopsis, and its intestinal flagellates. Biol Bull 48:309–327Google Scholar
  7. 7.
    Cleveland LR (1949) Hormone-induced sexual cycles of flagellates. I. Gametogenesis, fertilization and meiosis inTrichonympha. J Morph 85:197–294CrossRefGoogle Scholar
  8. 8.
    Cleveland LR (1960) The centrioles ofTrichonympha from termites and their functions in reproduction. J Protozool 7:326–341Google Scholar
  9. 9.
    Cleveland LR, Burke AW Jr, Karlson P (1960) Ecdysone-induced modifications in the sexual cycle of the protozoa ofCryptocercus. J Protozool 7:229–239Google Scholar
  10. 10.
    Cleveland LR, Hall SR, Sanders EP, Collier J (1934) The wood-feeding roachCryptocercus, its protozoa and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17:185–342Google Scholar
  11. 11.
    Collins NM, Wood TG (1984) Termites and atmospheric gas production. Science 224:84–86Google Scholar
  12. 12.
    Cook SF (1932) The respiratory gas exchange inTermopsis nevadensis. Biol Bull 63:246–257Google Scholar
  13. 13.
    Cruden DL, Markovetz AJ (1987) Microbial ecology of the cockroach gut. Ann Rev Microbiol 41:617–643CrossRefGoogle Scholar
  14. 14.
    Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754PubMedGoogle Scholar
  15. 15.
    Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase system inMethanobacterium thermoautotrophicum. Biochem 17:2374–2377CrossRefPubMedGoogle Scholar
  16. 16.
    Heath H (1927) Caste formation in the termite genusTermopsis. J Morphol 43:387–425CrossRefGoogle Scholar
  17. 17.
    Honigberg B (1970) Protozoa associated with termites and their role in digestion. In: Krishna KM, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, pp 1–36Google Scholar
  18. 18.
    Jones CG, Firn RD (1978) The role of photoecdysteroids in bracken fern,Pteridium aquilinum (L.) Kuhn as a defense against phytophagus insect attack. J Chem Ecol 4:117–138CrossRefGoogle Scholar
  19. 19.
    Kirby H (1931) Trichomonad flagellates from termites. II.Eutrichomastix, and the subfamily Trichomonadinae. Univ Cal Publ Zool 36:171–262Google Scholar
  20. 20.
    Kofoid CA, Swezy O (1919) Studies on the parasites of the termites. II. OnTrichomitopsis termitidis, a polymastigote flagellate with a highly developed neuromotor system. Univ Cal Publ Zool 20:21–40Google Scholar
  21. 21.
    Lee MJ, Schreurs P, Messer AC, Zinder S (1987) Association of methanogenic bacteria with flagellated protozoa from a termite hindgut. Curr Microbiol 15:337–341CrossRefGoogle Scholar
  22. 22.
    Lloyd D, Williams AG, Yarlett N, Hillman K (1983) Similarities between rument ciliates and trichomonads: Both possess hydrogenosomes. Protistologica 19:465Google Scholar
  23. 23.
    Luscher M, Karlson P (1958) Experimentelle auslosung von Hauntungen bei der termiteKalotermes flavicollis (Fabr). J Insect Physiol 1:341–345CrossRefGoogle Scholar
  24. 24.
    Muller M (1980) The hydrogenosome. In: Gooday GW, Lloyd D, Trinci ANP (eds) The eukaryotic microbial cell. Cambridge University Press, Cambridge, pp 127–143Google Scholar
  25. 25.
    Muller M (1988) Energy metabolism of protozoa without mitochondria. Ann Rev Microbiol 42:465–488CrossRefGoogle Scholar
  26. 26.
    Nutting WL (1956) Reciprocal protozoan transfaunations between the roachCryptocercus and the termiteZootermopsis. Biol Bull 110:83–90Google Scholar
  27. 27.
    Odelson DA, Breznak JA (1983) Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613Google Scholar
  28. 28.
    Odelson DA, Breznak JA (1985) Nutrition and growth characteristics ofTrichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621Google Scholar
  29. 29.
    Potrikus CJ, Breznak JA (1980) Anaerobic degradation of uric acid by gut bacteria of termites. Appl Environ Microbiol 40:125–132Google Scholar
  30. 30.
    Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc Natl Acad Sci USA 78:4601–4605Google Scholar
  31. 31.
    Rasmussen RA, Khalil MAK (1983) Global production of methane by termites. Nature 301:700–702CrossRefGoogle Scholar
  32. 32.
    Ryan TA Jr, Joiner BL, Ryan BF (1982) MINITAB reference manual. Minitab, Inc, State College, PennsylvaniaGoogle Scholar
  33. 33.
    Wolfe RS (1971) Microbial formation of methane. Adv Microbial Physiol 6:107–146Google Scholar
  34. 34.
    Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities, vol 1. Academic Press, London, pp 323–356Google Scholar
  35. 35.
    Yamin MA (1980) Cellulose metabolism by the termite flagellate,Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863Google Scholar
  36. 36.
    Yamin MA (1981) Cellulose metabolism by the flagellateTrichonympha is independent of endosymbiotic bacteria. Science 211:58–59Google Scholar
  37. 37.
    Yarlett N, Haan AC, Lloyd D, Williams AG (1983) Hydrogenosomes in a mixed isolate ofIsotricha prostoma andIsotricha intestinalis from ovine rumen contents. Comp Biochem Biophys 74B:357–364Google Scholar
  38. 38.
    Zimmerman PR, Greenberg JP, Wandiga SO, Crutzen PJ (1982) Termites: A potentially large source of atmospheric methane, carbon dioxide and molecular hydrogen. Science 218:563–565Google Scholar
  39. 39.
    Zinder SH, Anguish T, Cardwell SC (1984) Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl Environ Microbiol 47:1343–1345Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Adam Catton Messer
    • 1
  • Monica J. Lee
    • 2
  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Department of MicrobiologyCornell UniversityIthacaUSA

Personalised recommendations