Advertisement

Microbial Ecology

, Volume 18, Issue 3, pp 261–273 | Cite as

The relative importance of different ciliate taxa in the pelagic food web of lake constance

  • Helga Müller
Article

Abstract

Abundance, biovolume, and species composition of pelagic ciliates in Lake Constance were recorded over two annual cycles (1987/88). Production was estimated from mean annual biovolumes and size-specific growth rates obtained from the literature. Cell concentrations and biovolumes ranged from 0.1 to 120 cells ml−1 and from 3 to 1,200 mm3 m−3, respectively. Mean annual values were, respectively, 6.8 cells ml−1 and 94 mm3 m−3 in 1987, and 12.0 cells ml−1 and 130 mm3 m−3 in 1988. In both years, prostome nanociliates (<20μm) dominated numerically, while strobiliids in the size range 20–35μm contributed most significantly to ciliate production. Ciliate community production, according to a crude calculation, yielded approximately 10–15 g C m−2 year−1.

Keywords

Growth Rate Species Composition Size Range Nature Conservation Cell Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albright LJ, Sherr EB, Sherr BF, Fallon RD (1987) Grazing of ciliated protozoa on free and particle-attached bacteria. Mar Ecol Prog Ser 38:125–129Google Scholar
  2. 2.
    Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27:1059–1071Google Scholar
  3. 3.
    Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoa in freshwater lakes. Limnol Oceanogr 27:246–253Google Scholar
  4. 4.
    Beaver JR, Crisman TL (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb Ecol 17:111–136CrossRefGoogle Scholar
  5. 5.
    Bick H (1972) Ciliata. In: Elster HJ, Ohle W (eds) Das Zooplankton der Binnen-gewässer, vol 26. E. Schweizerbart' sche Verlagsbuchhandlung, Stuttgart, pp. 31–83Google Scholar
  6. 6.
    Carlough LA, Meyer JL (1989) Protozoans in two southeastern blackwater rivers and their importance to trophic transfer. Limnol Oceanogr 34:163–177Google Scholar
  7. 7.
    Corliss JO (1979) The ciliated protozoa: Characterization, classification and guide to the literature, 2nd ed. Pergamon Press, LondonGoogle Scholar
  8. 8.
    Curds CR (1982) British and other freshwater ciliated protozoa. I. Ciliophora: Kinetofragminophora. Keys and notes for the identification of the free-living genera. Synopsis of the British Fauna No. 22, Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Curds CR, Gates MA, Roberts DM (1983) British and other freshwater ciliated protozoa. II. Ciliophora: Oligohymenophora and Polyhymenophora. Keys and notes for the identification of the free-living genera. Synopsis of the British Fauna No. 23, Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Dragesco J (1968) Les genresPleuronema Dujardin,Schizocalyptra nov. gen. etHistiobalantium Stokes (Ciliés holotriches hyménostomes). Protistologica 4:85–107Google Scholar
  11. 11.
    Fenchel T (1968) The ecology of marine microbenthos. III. The reproductive potential of ciliates. Ophelia 5:123–136Google Scholar
  12. 12.
    Fenchel T (1980) Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance. Microb Ecol 6:13–25CrossRefGoogle Scholar
  13. 13.
    Fenchel T (1987) Ecology of protozoa: The biology of free-living phagotrophic protists. Science Technical Publishers, Madison, WisconsinGoogle Scholar
  14. 14.
    Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic, free-living protozoa. Microb Ecol 9:99–122CrossRefGoogle Scholar
  15. 15.
    Finlay BJ (1977) The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia 30:75–81CrossRefGoogle Scholar
  16. 16.
    Finlay BJ (1978) Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Freshwater Biology 8:327–341Google Scholar
  17. 17.
    Foissner W, Wilbert N (1979) Morphologie, Infraciliatur und Ökologie der limnischen Tintinnina:Tintinnidium fluviatile Stein,Tintinnidium pusillum Entz,Tintinnopsis cylindrata Daday undCodonella cratera Leidy (Ciliophora, Polyhymenophora). J Protozool 26:90–103Google Scholar
  18. 18.
    Foissner W (1982) Ecology and taxonomy of the Hypotrichida (Protozoa, Ciliophora) of some Austrian soils. Arch Prot 126:19–143Google Scholar
  19. 19.
    Foissner W, Oleksiv I, Müller H (1989) Morphology and infraciliature of some ciliates (Protozoa: Ciliophora) from stagnant waters. Arch Protistenkunde (in press)Google Scholar
  20. 20.
    Gates MA (1984) Contribution of ciliated protozoa to the planktonic biomass of lake ecosystems. Hydrobiologia 108:233–238Google Scholar
  21. 21.
    Geller W (1985) Production, food utilization and losses of two coexisting, ecologically differentDaphnia species. Arch Hydrobiol Beih 21:67–79Google Scholar
  22. 22.
    Geller W (1989) The energy budget of two sympatricDaphnia species in Lake Constance: Productivity and energy residence times. Oecologia 78:242–250CrossRefGoogle Scholar
  23. 23.
    Gifford DJ (1985) Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 23:257–267Google Scholar
  24. 24.
    Heinbokel JF (1978) Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Marine Biology 47:177–189CrossRefGoogle Scholar
  25. 25.
    Kahl A (1930–1935) Urtiere oder Protozoa. I. Wimpertiere oder Ciliata. In: Dahl F (ed) Die Tierwelt Deutschlands. G Fischer Jena, pp. 1–886Google Scholar
  26. 26.
    Montagnes DJS, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: An assessment of their trophic role. Marine Biology 99:21–30CrossRefGoogle Scholar
  27. 27.
    Montagnes DJS, Lynn DH (1989) The annual cycle ofMesodinium rubrum in the waters surrounding the Isles of Shoals, Gulf of Maine. J Plankton Res 11:193–201Google Scholar
  28. 28.
    Müller H (1987) Enumeration and identification of pelagic freshwater ciliates: A comparison of methods. EOS 68:1783Google Scholar
  29. 29.
    Müller H, Geller W, Schöne A (1989) Pelagic ciliates in Lake Constance: Comparison of epilimnion and hypolimnion. Verhandlungen Internat. Verein. Limnol. (in press)Google Scholar
  30. 30.
    Pace ML (1982) Planktonic ciliates: Their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can J Fish Aquat Sci 39:1106–1116Google Scholar
  31. 31.
    Pace ML (1985) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55Google Scholar
  32. 32.
    Porter KG, Sherr EB, Sherr BF, Pace ML, Sanders RW (1985) Protozoa in planktonic food webs. J Protozool 32:409–415Google Scholar
  33. 33.
    Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159:75–88Google Scholar
  34. 34.
    Rivier A, Brownlee RW, Sheldon RW, Rassoulzadegan F (1985) Growth of microzooplankton: A comparative study of bacterivorous zooflagellates and ciliates. Mar Microb Food Webs 1:51–60Google Scholar
  35. 35.
    Sanders RW, Porter KG, Bennett SJ, DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater plankton community. Limnol Oceanogr 34:673–687Google Scholar
  36. 36.
    Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol Oceanogr 31:177–183Google Scholar
  37. 37.
    Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711CrossRefGoogle Scholar
  38. 38.
    Simon M, Tilzer MM (1987) Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J Plankton Res 9:535–552Google Scholar
  39. 39.
    Smetacek V (1984) Growth dynamics of a common Baltic protozooplankter: The ciliate genusLohmaniella. Limnologica 15:371–376Google Scholar
  40. 40.
    Skogstad A, Granskog L, Klaveness D (1987) Growth of freshwater ciliates offered planktonic algae as food. J Plankton Res 9:503–512Google Scholar
  41. 41.
    Sommer U (1985) Seasonal succession of phytoplankton in Lake Constance. BioScience 35:351–357Google Scholar
  42. 42.
    Stoecker DK, Davis LH, Provan A (1983) Growth ofFavella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro. Mar Biol 75:293–302CrossRefGoogle Scholar
  43. 43.
    Stoecker DK, Evans GT (1985) Effects of protozoan herbivory and carnivory in a microplankton food web. Mar Ecol Prog Ser 25:159–167Google Scholar
  44. 44.
    Stoecker DK, Cucci TL, Hulburth EM, Yentsch CM (1986) Selective feeding byBalanion sp. Ciliata Balanoidae on phytoplankton that best supports its growth. J Exp Mar Biol Ecol 95:113–130CrossRefGoogle Scholar
  45. 45.
    Taylor WD (1978) Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214CrossRefGoogle Scholar
  46. 46.
    Taylor WD, Heynen ML (1987) Seasonal and vertical distribution of Ciliophora in Lake Ontario. Can J Fish Aquat Sci 44:2185–2191Google Scholar
  47. 47.
    Tilzer MM, Beese B (1988) The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz Z Hydrol 50:1–39Google Scholar
  48. 48.
    Tuffrau M (1976) Perfectionnments et pratique de la technique d'immpregnation au Protargol des infusoires cilies. Protistologica 3:91–98Google Scholar
  49. 49.
    Verity PG (1985) Grazing, respiration, excretion, and growth rates of tintinnids. Limnol Oceanogr 30:1268–1282Google Scholar
  50. 50.
    Verity PG (1986) Growth rates of natural tintinnid populations in Narragansett Bay. Mar Ecol Prog Ser 29:105–115Google Scholar
  51. 51.
    Verity PG, Villareal TA (1986) The relative food value of diatoms, dinoflagellates, flagellates and cyanobacteria for tintinnid ciliates. Arch Prot 131:71–84Google Scholar
  52. 52.
    Weisse T (in press) Trophic interactions among heterotrophic microplankton, nanoplankton and bacteria in Lake Constance (FRG). HydrobiologiaGoogle Scholar
  53. 53.
    Weisse T, Müller H (in press) Significance of heterotrophic nanoflagellates and ciliates in large lakes: Evidence from Lake Constance. In: Tilzer MM, Serruya C (eds) Ecological structure and function in large lakes. Science Technical Publishers, Madison, WisconsinGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Helga Müller
    • 1
  1. 1.Limnological InstituteUniversity of KonstanzKonstanzFederal Republic of Germany

Personalised recommendations