Constructive Approximation

, Volume 4, Issue 1, pp 175–198

Moment inequalities and the Riemann hypothesis

  • George Csordas
  • Richard S. Varga
Article

Abstract

It is known that the Riemann hypothesis is equivalent to the statement that all zeros of the Riemann ξ-function are real. On writingξ(x/2)=8 ∫0 Φ(t) cos(xt)dt, it is known that a necessary condition that the Riemann hypothesis be valid is that the moments\(\hat b_m (\lambda ): = \int_0^\infty {t^{2m} e^{\lambda t^2 } \Phi (t)dt}\) satisfy the Turán inequalities
$$(\hat b_m (\lambda ))^2 > \left( {\frac{{2m - 1}}{{2m + 1}}} \right)\hat b_{m - 1} (\lambda )\hat b_{m + 1} (\lambda )(m \geqslant 1,\lambda \geqslant 0).$$
(*)
We give here a constructive proof that log\(\Phi (\sqrt t )\) is strictly concave for 0 <t < ∞, and with this we deduce in Theorem 2.4 a general class of moment inequalities which, as a special case, establishes that the inequalities (*) are in fact valid for all real λ. As the case λ=0 of (*) corresponds to the Pólya conjecture of 1927, this gives a new proof of the Pólya conjecture.

AMS classification

Primary 30D10 Primary 30D15 Secondary 26A51 Key words and phrases Riemann hypothesis Turán inequalities Universal factors Logarithmic concavity Moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Barlow, A. W. Marshall, F. Proschan (1963):Properties of probability distributions with monotone hazard rate. Ann. Math. Statist.,34:375–389.Google Scholar
  2. 2.
    R. P. Boas (1954): Entire Functions. New York: Academic Press.Google Scholar
  3. 3.
    N. G. de Bruijn (1950):The roots of trigonometric integrals. Duke Math. J.,17:197–226.Google Scholar
  4. 4.
    G. Csordas, T. S. Norfolk, R. S. Varga (1986):The Riemann Hypothesis and the Turán inequalities. Trans. Amer. Math. Soc.,296:521–541.Google Scholar
  5. 5.
    E. K. Haviland (1945):On the asymptotic behavior of the Riemann ξ-function. Amer. J. Math.,67:411–416.Google Scholar
  6. 6.
    Yu. V. Matiyasevich (1982):Yet another machine experiment in support of Riemann's conjecture, Kiebernetika (Kiev), no. 6, 10, 22 (Russian, English summary). (Translated in: Cybernetics, 18(6) (1983), 705–707).Google Scholar
  7. 7.
    A. W. Marshall, I. Olkin (1979): Inequalities: Theory of Majorization and Its Applications. New York: Academic Press.Google Scholar
  8. 8.
    C. M. Newman (1976):Fourier transforms with only real zeros. Proc. Amer. Math. Soc.61: 245–251.Google Scholar
  9. 9.
    G. Pólya (1918):Über die Nullstellen gewisser ganzer Funktionen. Math. Z.,2:352–383.Google Scholar
  10. 10.
    G. Pólya (1926):Bemerkung über die Integraldarstellung der Riemannschen ξ-Funktion. Acta Math.,48:305–317.Google Scholar
  11. 11.
    G. Pólya (1926):On the zeros of certain trigonometric integrals. J. London Math. Soc.,1:98–99.Google Scholar
  12. 12.
    G. Pólya (1927):Über trigonometrische Integrale mit nur reellen Nullstellen. J. Reine Angew. Math.,158:6–18.Google Scholar
  13. 13.
    G. Pólya (1927):Über die algebraisch-funktionen theoretischen Intersuchungen von J. L. W. V. Jensen. Kgl. Danske Vid. Sel. Math.-Fys. Medd.,7:3–33Google Scholar
  14. 14.
    G. Pólya (1974):Location of zeros. In: Collected Papers, vol. 2 (R. P. Boas, ed.). Cambridge, MA: MIT Press.Google Scholar
  15. 15.
    G. Pólya, J. Schur (1914):Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math.144:89–113.Google Scholar
  16. 16.
    C. L. Prather (1981):Final sets for operators on classes of entire functions representable as a Fourier integral. J. Math. Anal. Appl.82:200–220.Google Scholar
  17. 17.
    E. C. Titchmarsh (1951): The Theory of the Riemann Zeta Function. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • George Csordas
    • 1
  • Richard S. Varga
    • 2
  1. 1.Department of MathematicsUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Institute for Computational MathematicsKent State UniversityKentUSA

Personalised recommendations