Journal of environmental polymer degradation

, Volume 4, Issue 2, pp 131–134

Enhanced production of poly(3-hydroxybutyrate) by filamentation-suppressed recombinantEscherichia coli in a defined medium

  • Young Lee
  • Sang Yup Lee
Short Communication

Abstract

Fed-batch cultures of recombinantEscherichia coli strains were carried out for the production of poly(3-hydroxybutyric acid) (PHB) in a chemically defined medium. TheE. coli strains used were XL1-Blue, harboring pSYL105, a stable high-copy number plasmid containing theAlcaligenes eutrophus polyhydroxyalkanoate (PHA) genes, and XL1-Blue, harboring pSYL107, which is pSYL105 containing theE. coli ftsZ gene to suppress filamentation. With XL1-Blue(pSYL105) the final cell mass and PHB concentration obtained in 62 h were 102 and 22.5 g/L, respectively. Fed-batch culture of XL1-Blue(pSYL107) under identical conditions resulted in a final cell mass and PHB concentration of 127.5 and 48.2 g/L, respectively. The PHB contents obtained with XL1-Blue(pSYL105) and XL1-Blue(pSYL107) were 22.1 and 37.8%, respectively. Therefore, PHB was more efficiently produced in a defined medium by employing filamentation-suppressed recombinantE. coli.

Key words

Escherichia coli poly(3-hydroxybutyrate) (PHB) filamentation fed-batch culture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54, 450–472.PubMedGoogle Scholar
  2. 2.
    Y. Poirier, C. Nawrath, and C. Somerville (1995)Bio/Technology 13, 142–150.PubMedGoogle Scholar
  3. 3.
    S. Y. Lee (1996)Biotechnol. Bioeng. 49, 1–14.Google Scholar
  4. 4.
    S. Y. Lee and H. N. Chang (1995)Adv. Biochem. Eng. Biotechnol. 52, 27–58.PubMedGoogle Scholar
  5. 5.
    O. P. Peoples and A. J. Sinskey (1989)J. Biol. Chem. 264, 15298–15303.PubMedGoogle Scholar
  6. 6.
    P. Schubert, A. Steinbuchel, and H. G. Schlegel (1998)J. Bacteriol. 170, 5837–5847.Google Scholar
  7. 7.
    S. C. Slater, W. H. Voige, and D. E. Dennis (1988)J. Bacteriol. 170, 4431–4436.PubMedGoogle Scholar
  8. 8.
    S. Y. Lee and H. N. Chang (1995)Can. J. Microbiol. 41 (Suppl. 1), 207–215.PubMedGoogle Scholar
  9. 9.
    S. Y. Lee, K. S. Yim, H. N. Chang, and Y. K. Chang (1994)J. Biotechnol. 32, 203–211.PubMedGoogle Scholar
  10. 10.
    S. Y. Lee, H. N. Chang, and Y. K. Chang (1994)Ann. N.Y. Acad. Sci. 721, 43–53.PubMedGoogle Scholar
  11. 11.
    S. Y. Lee and H. N. Chang (1994)J. Environ. Polym. Degrad. 2, 169–176.Google Scholar
  12. 12.
    S. Y. Lee, K. M. Lee, H. N. Chang, and A. Steinbuchel (1994)Biotechnol. Bioeng. 44, 1337–1347.Google Scholar
  13. 13.
    J. Lutkenhaus (1993)Curr. Opin. Genet. Dev. 3, 783–788.PubMedGoogle Scholar
  14. 14.
    S. Y. Lee (1994)Biotechnol. Lett. 16, 1247–1252.Google Scholar
  15. 15.
    W. J. Dower, J. F. Miller, and C. W. Ragsdale (1988)Nucleic Acids Res. 16, 6127–6145.PubMedGoogle Scholar
  16. 16.
    S. Y. Lee and H. N. Chang (1993)Biotechnol. Lett. 15, 971–974.Google Scholar
  17. 17.
    G. Braunegg, B. Sonnleitner, and R. M. Lafferty (1978)Eur. J. Appl. Microbiol. Biotechnol. 6, 29–37.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Young Lee
    • 1
  • Sang Yup Lee
    • 1
  1. 1.Department of Chemical Engineering and BioProcess Engineering Research CenterKorea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations