Theoretical and Mathematical Physics

, Volume 109, Issue 3, pp 1495–1507 | Cite as

Fractal geometry for images of continuous embeddings ofp-adic numbers and solenoids into Euclidean spaces

  • D. V. Chistyakov
Article

Abstract

Explicit formulas are obtained for a family of continuous mappings of p-adic numbersQp and solenoidsTp into the complex planeC and the spaceR3, respectively. Accordingly, this family includes the mappings for which the Cantor set and the Sierpiński carpet are images of the unit balls inQ2 andQ3. In each of the families, the subset of the embeddings is found. For these embeddings, the Hausdorff dimensions are calculated and it is shown that the fractal measure on the image ofQp coincides with the Haar measure onQp. It is proved that under certain conditions, the image of the p-adic solenoid is an invariant set of fractional dimension for a dynamic system. Computer drawings of some fractal images are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov,p-Adic Analysis and Mathematical Physics, World Scientific, Singapore-New Jersey-London-Hong Kong (1994).Google Scholar
  2. 2.
    M. Pitkanen, “p-Adic Physics?” Preprint SF-00170, University of Helsinki (1994).Google Scholar
  3. 3.
    S. Havlin and N. Weissman,J. Phys. A,19, 1021–1026 (1986).Google Scholar
  4. 4.
    E. I. Zelenov,J. Math. Phys.,32, 147–152 (1991).Google Scholar
  5. 5.
    A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion, Springer, New York-Heidelberg-Berlin (1983).Google Scholar
  6. 6.
    A. T. Ogielski and D. L. Stein,Phys. Rev. Let.,55, No. 15 (1985).Google Scholar
  7. 7.
    K. Allen and M. Kluater,Optical Transformations in Fractals. Fractals in Physics, North Holland, Amsterdam-Oxford-New York-Tokyo (1986).Google Scholar
  8. 8.
    H. Federer,Geometric Measure Theory, Springer, New York-Heidelberg-Berlin (1969).Google Scholar
  9. 9.
    P. Billingsley,Ergodic Theory and Information, Wiely, New York-London-Sidney (1965).Google Scholar
  10. 10.
    N. Koblitz,p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, Springer, New York-Heidelberg-Berlin (1977).Google Scholar
  11. 11.
    E. Hewitt and K. Ross,Abstract Harmonic Analysis, Vol. I, Springer, New York-Heidelberg-Berlin (1963).Google Scholar
  12. 12.
    J. L. Kelley,General Topology, Van Nostrand, Princeton, New Jersey (1957).Google Scholar
  13. 13.
    I. M. Gel'fand, M. I. Graev, and L. I. Pyatetskii-Shapiro,Representation Theory and Automorphic Functions, Saunders, Philadelphia (1969).Google Scholar
  14. 14.
    B. V. Shabat,Complex Analysis [in Russian], Vol. 1, Nauka, Moscow (1985).Google Scholar
  15. 15.
    J. Feder,Fractals, Plenum, New York (1988).Google Scholar
  16. 16.
    J. M. Ziman,Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems, Cambridge University Press, Cambridge-London-New York-Melbourne (1979).Google Scholar
  17. 17.
    V. I. Arnold,Ordinary Differential Equations, MIT Press, Cambridge (1978).Google Scholar
  18. 18.
    D. Mumford,Tata Lectures Notes on Theta Functions, Vols. I, II, Birkhäuser, Boston-Basel-Stuttgart (1983, 1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • D. V. Chistyakov
    • 1
  1. 1.Kazan' State UniversityUSSR

Personalised recommendations