Dispersion characteristics of asymmetric coupled anisotropic dielectric waveguides using FDFD

  • Helder Fleury Pinheiro
  • Attílio José Giarola
  • Carlos Leônidas da Silva Souza Sobrinho
Article

Abstract

The formulation is developed in the frequency domain and the finite difference method is used for the numerical solution of the scalar wave equation, written in terms of the transverse components of the magnetic field. As a result a conventional eigenvalue problem is obtained without the presence of spurious modes due to the implicit inclusion of the divergence of the magnetic field equal to zero. The formulation is developed to include biaxial anisotropic dielectrics with an index profile varying arbitrarily in the cross section of the waveguide under analysis. This formulation is then applied to the analysis of the influence on the dispersion characteristics of the dimensions of asymmetric coupled rectangular uniaxial anisotropic dielectric waveguides. As expected, the reduction of the height or the width of one of the rectangular dielectric waveguides causes the dispersion curves to move towards higher frequencies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Hafner and R. Ballisti, “Electromagnetic waves on cylindrical structures calculated by the method of moment and by the point-matching technique”, inInt. IEEE AP-S Symp. Dig., June 1981, pp. 331–333.Google Scholar
  2. [2]
    M. Koshiba, K. Hayata and M. Suzuki, “Vectorial finite-element method without spurious solutions for dielectric waveguide problems”,Electron. Lett., vol. 20, pp. 409–410, May 1984.Google Scholar
  3. [3]
    K. Hayata, M. Koshiba, M. Eguchi and M. Suzuki, “Vectorial finite-element method without spurious solutions for dielectric waveguiding problems using transverse magnetic-field component”,IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1120–1124, Nov 1986.Google Scholar
  4. [4]
    M. Koshiba, K. Hayata and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides”,Electron. Lett., vol. 18, no 10, pp. 411–412, 13 May 1982.Google Scholar
  5. [5]
    N. Schulz, K. Bierwirth, and F. Arndt, “Finite-difference analysis of integrated optical waveguides without spurious mode solutions”,Electron. Lett., vol. 22, no 18, pp. 963–965, Aug. 1986.Google Scholar
  6. [6]
    K. Bierwirth, N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures”,IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1104–1114, Nov. 1986.Google Scholar
  7. [7]
    N. Schulz, K. Bierwirth, F. Arndt and U. Köster, “Finite-difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguides”,IEEE Trans. Microwave Theory Tech., vol. 38, pp. 722–729, June. 1990.Google Scholar
  8. [8]
    N. Schulz, K. Bierwirth, F. Arndt and U. Köster, “Rigorous finite-difference analysis of coupled channel waveguides with arbitrarily varying index profile”,J. Lightwave Technol., vol. 9, no 10, pp. 1244–1253, Oct. 1991.Google Scholar
  9. [9]
    C.L. da Silva Souza Sobrinho and A.J. Giarola, “Analysis of an infinite array of rectangular anisotropic dielectric waveguides using finite-difference method”,IEEE Trans. Microwave Theory Tech., vol. 40, no 5, pp. 1021–1025, May 1992.Google Scholar
  10. [10]
    C.L. da Silva Souza Sobrinho and A.J. Giarola, “Analysis of biaxial anisotropic dielectric waveguides with Gaussian-Gaussian index of refraction profiles by the finite-difference method”,IEE Proc-H, vol. 140, no 3, pp. 224–230, June 1993.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Helder Fleury Pinheiro
    • 1
  • Attílio José Giarola
    • 1
  • Carlos Leônidas da Silva Souza Sobrinho
    • 2
  1. 1.School of Electrical EngineeringState University of Campinas (UNICAMP)Campinas, SPBrazil-CEP
  2. 2.Department of Electrical EngineeringFederal University of ParáBelém, PABrazil-CEP

Personalised recommendations