Theoretical and Mathematical Physics

, Volume 107, Issue 1, pp 499–510 | Cite as

Statistical mechanics of a vortex system in a thin superconducting film using the cyclic approximation

III. Finite-size vortex core effects
  • D. Y. Irz
  • V. N. Ryzhov
  • E. E. Tareeva


The statistical mechanics of a vortex system in a two-dimensional superconductor is constructed using the cyclic approximation, accounting for the finiteness of the vortex core. This leads to a crossover of the vortex antivortex pair unbinding transition from the usual continuous Kosterlitz-Thouless-like behavior for large core energies to the first order transition for low energies.


Vortex Statistical Mechanic Order Transition Vortex Core Large Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Ryzhov and E. E. Tareeva,Phys. Rev. B,48, 12907–12911 (1993).Google Scholar
  2. 2.
    V. N. Ryzhov and E. E. Tareyeva,Teor. Mat. Fiz.,96, 425–437 (1993).Google Scholar
  3. 3.
    V. N. Ryzhov and E. E. Tareyeva,Phys. Rev. B,49, 6162–6173 (1994).Google Scholar
  4. 4.
    J. M. Kosterlitz and D. J. Thouless,J. Phys. C,6, 1181 (1973).Google Scholar
  5. 5.
    J. M. Kosterlitz,J. Phys. C,7, 1046 (1974).Google Scholar
  6. 6.
    D. Yu. Irz, V. N. Ryzhov, and E. E. Tareeva,Teor. Mat. Fiz.,104, 337–347 (1995).Google Scholar
  7. 7.
    J. Pearl, in:Low Temperature Physics LT9 (J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yagub, eds.), Plenum, New York (1965), p. 566.Google Scholar
  8. 8.
    P. G. De Gennes,Superconductivity of Metals and Alloys, Benjamin, New York (1966).Google Scholar
  9. 9.
    E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics [in Russian], Vol. 2, Nauka, Moscow (1978).Google Scholar
  10. 10.
    R. Balecku,Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, London (1975).Google Scholar
  11. 11.
    P. Minnhagen and M. Nylén,Phys. Rev. B,31, 5768 (1985).Google Scholar
  12. 12.
    J. R. Clem, in:Inhomogeneous Superconductors — 1979 (D. U. Gubser, T. L. Francavilla, S. A. Wolf, and J. R. Leibowitz, eds.) ((Berkeley Springs, WV), Proceedings of the Conference on Inhomogeneous Superconductors, AIP Conf. Proc. No. 58), AIP, New York (1979), p. 245.Google Scholar
  13. 13.
    V. Cataudella, P. Minnhagen, and H. Weber,J. Phys: Condens. Matter,2, 2345 (1990).Google Scholar
  14. 14.
    B.-W. Xu and Yu.-M. Zhang,Phys. Rev B,50, 18651 (1994).Google Scholar
  15. 15.
    J. E. Mayer and M. Goeppert-Mayer,Statistical Mechanics, Wiley, New York (1976).Google Scholar
  16. 16.
    M. Tinkham,Introduction to Superconductivity, McGraw-Hill, New York (1975).Google Scholar
  17. 17.
    J. W. P. Hsu and A. Kapitulnik,Phys. Rev. B,45, 4819 (1992).Google Scholar
  18. 18.
    P. Minnhagen,Rev. Mod. Phys.,59, 1001 (1987).Google Scholar
  19. 19.
    P. Minnhagen and M. Wallin,Phys. Rev. B,40, 5109 (1989).Google Scholar
  20. 20.
    J.-R. Lee and S. Teitel,Phys. Rev. Lett.,66, 2100 (1991).Google Scholar
  21. 21.
    A. Jonsson, P. Minnhagen, and M. Nylen,Phys. Rev. Lett.,70, 1327 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • D. Y. Irz
    • 1
  • V. N. Ryzhov
    • 1
  • E. E. Tareeva
    • 1
  1. 1.L. F. Vereshchagin Institute of High Pressure PhysicsRussian Academy of SciencesUSSR

Personalised recommendations