Cellular and Molecular Neurobiology

, Volume 15, Issue 6, pp 597–614


  • Terry Reisine


1. Somatostatin (SRIF) exerts diverse physiological actions in the body including regulation of hormone and neurotransmitter release and neuronal firing activity. Analogs of SRIF are used clinically to treat tumors and cancers and to block the hypersecretion of growth hormone in acromegaly.

2. The recent cloning of five SRIF receptor subtypes has allowed for the identification of the molecular basis of the cellular actions of SRIF. The ligand binding domains and regions involved in coupling to G proteins and cellular effector systems are being identified and the processes by which SRIF inhibits cell growth and proliferation are being established. Furthermore, subtype selective agonists have been generated which are being used to investigate the specific biological roles of each SRIF receptor subtypes.

3. Such information will be useful in developing a new generation of SRIF drugs that could be employed to treat metabolic diseases, disorders of the gut, cancer and abnormalities in the central nervous system such as epilepsy and Alzheimer's disease.

Key words

somatostatin receptors cDNA neurohormone GTP binding proteins cancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, G. I. and Reisine, T. (1993). Molecular biology of SRIF receptors.Trends Neurosci. 1634–38.PubMedGoogle Scholar
  2. Brazeau, P., Vale, W., Burgus, R., Ling, N., Rivier, J., and Guillemin, R. (1972). Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone.Science 12977–79.Google Scholar
  3. Breder, C. D., Yamada, Y., Yasuda, K., Seino, S., Saper, C. B., and Bell, G. I. (1992). Differential expression of SRIF receptor subtypes in brain.J. Neurosci. 12:3920–3934.PubMedGoogle Scholar
  4. Brown, M., Rivier, J., and Vale, W. (1977). SRIF analogs with selected biological activities.Science 1961467–1468.PubMedGoogle Scholar
  5. Brown, P., and Schonbrunn, A. (1993). Affinity purification of a SRIF receptor-G protein complex demonstrates specificity in receptor G protein coupling.J. Biol. Chem. 2686668–6676.PubMedGoogle Scholar
  6. Bruno, J. F., Xu, Y., Song, J., and Berelowitz, M. (1992). Molecular cloning and functional expression of a novel brain specific SRIF receptor.Proc. Natl. Acad. Sci. 8911151–11155.PubMedGoogle Scholar
  7. Buscail, L., Delesque, N., Esteve J.-P., Saint-Laurent, N., Prats, H., Clerc, P., Robberecht, D., Bell, G. I., Liebow, C., Schally, A. V., Vaysse, N., and Susini, C. (1994). Stimulation of tyrosine phosphatase and inhibition of cell proliferation by SRIF analogues: mediation by human SRIF receptor subtypes SSTR1 and SSTR2.Proc. Natl. Acad. Sci. 912315–2319PubMedGoogle Scholar
  8. Buscail, L., Esteve, J. P., Saint-Laurent, N., Bertrand, V., Reisine, T., O'Carroll, A. M., Bell, G. I., Schally, A., Vaysse, N., and Susini, C. (1995). Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by SSTR2 and SSTR5 somatostatin receptor subtypes through different mechanisms.Proc. Natl. Acad. Sci. 921580–1584.PubMedGoogle Scholar
  9. Chesselet, M.-F., and Reisine, T. (1983). Somatostatin regulates dopamine release in rat striatal slices and cat caudate nucleus.J. Neurosci. 3232–236.PubMedGoogle Scholar
  10. Corness, J. D., Demchyshyn, L. L., Seeman, P., Van Tol, H. H. M., Srikant, C. B., Kent, G., Patel, Y. C., and Niznik, H. B. (1993). A human SRIF receptor (SSTR3), located on chromosome 22, displays preferential affinity for SRIF-14 like peptides.FEBS Lett. 321279–284.PubMedGoogle Scholar
  11. Demchyshyn, L L., Srikant, C. B., Sunahara, R. K., Kent, G., Seeman, P., Van Tol, H. H. M., Panetta, R., Patel, Y. C., and Niznik, H. B. (1993). Cloning and expression of a human SRIF-14-selective receptor variant (SRIF receptor 4) located on chromosome 20.Mol. Pharmacol. 43894–901.PubMedGoogle Scholar
  12. Dixon, R., Sigal, I., Rands, E., Register, R., Candelore, M., Blake, A., and Strader, C. (1987). Ligand binding to beta-adrenergic receptor involves its rhodopsin-like core.Nature 32673–77.PubMedGoogle Scholar
  13. Epelbaum, J. (1986). SRIF in the central nervous system: Physiology and pathological modification.Prog. Neurobiol. 2763–100.PubMedGoogle Scholar
  14. Epelbaum, J., Dournaud, P., Fodor, M., and Viollet, C. (1994). The neurobiology of SRIF.Crit. Rev. Neurobiol. 825–44.PubMedGoogle Scholar
  15. Feniuk, W., Dimech, J., and Humphrey, P. P. A. (1993). Characterization of SRIF receptors in guinea-pig isolated ileum, vas deferens and right atrium.Br. J. Pharmacol. 1101156–1164.PubMedGoogle Scholar
  16. Fitzpatrick, V., and Vandlen, R. (1994). Agonist selectivity determinants in SRIF receptor subtypes I and II.J. Biol. Chem. 26924621–24626.PubMedGoogle Scholar
  17. Garcia, P. D., and Myers, R. M. (1994). Pituitary cell line GH3 expresses two SRIF receptor subtypes that inhibit adenylyl cyclase: functional expression of rat SRIF receptor subtypes 1 and 2 in human embryonic kidney 293 cells.Mol. Pharmacol. 45402–409.PubMedGoogle Scholar
  18. Gether, U., Johansen, T., Snider, R., Lowe, J., Nakanishi, S., and Schwartz, T. (1993). Different binding epitopes on the NK-1 receptor for substance P and a non-peptide antagonist.Nature 362345–348.PubMedGoogle Scholar
  19. Gilman, A. (1987). G proteins: Transducers of receptor-generated signals.Annu. Rev. Biochem. 56615–649.PubMedGoogle Scholar
  20. Gomez-Pan, A., Reed, J., Albinus, M., Shaw, B., Hall, R., Besser, G., Coy, D., Kastin, A., and Schally, A. (1975). Direct inhibition of gastric acid and pepsin secretion by growth-hormone release-inhibiting hormone in cats.Lancet 1888–890.PubMedGoogle Scholar
  21. Goodman, R., Jacobs, J., Chin, W., Lund, P., Dee, P., and Habner, J. (1980). Nucleotide sequence of a cloned structural gene coding for a precusor of pancreatic somatostatin.Proc. Natl. Acad. Sci. 775869–5873.PubMedGoogle Scholar
  22. Greenman, Y., and Melmed, S. (1994). Heterogeneous expression of two SRIF receptor subtypes in pituitary tumors.J. Clin. Endocrinol. Metabol. 78398–403.Google Scholar
  23. He, H. T., Johnson, K., Thermos, K., and Reisine, T. (1989). Purification of a putative brain SRIF receptor.Proc. Natl. Acad. Sci. 861480–1484.PubMedGoogle Scholar
  24. Hellman, B., and Lernmark, A, (1969). Inhibition of thein vitro secretion of insulin by an extract of pancreatic alphal cells.Endocrinology 841484–1488.PubMedGoogle Scholar
  25. Hershberger, R. E., Newman, B. L., Florio, T., Bunzow, J., Civelli, O., Li, X.-J., Forte, M., and Stork, P. B. (1994). The SRIF receptors SSTR1 and SSTR2 are coupled to inhibition of adenylyl cyclase in CHO cells via pertussis toxin-sensitive pathways.Endocrinology 1341277–1285.PubMedGoogle Scholar
  26. Horstman, D., Brandon, S., Wilson, A., Guyer, C., Cragoe, E., and Limbird, L. (1990). An aspartate conserved among G-protein linked receptors confers allosteric regulation of alpha2-adrenergic receptors by sodium.J. Biol. Chem. 26521590–21595.PubMedGoogle Scholar
  27. Hoyer, D.,et al. (1994). Molecular pharmacology of somatostatin receptors.Naunyn-Schmiedeberg's Arch. Pharmacol. 350441–453.Google Scholar
  28. Huany, Z., He, Y., Raynor, K., Tallent, M., Reisine, T., and Goodman, M. (1992). Side chain chiral methylated SRIF analog synthesis and conformational analysis.J. Am. Chem. Soc. 1149390–9401.Google Scholar
  29. Ikeda, S., and Schofield, G. (1989). SRIF blocks a Ca+ + current in rat sympathetic ganglion neurons.J. Physiol. 409221–240.PubMedGoogle Scholar
  30. Jakobs, K., Aktories, K., and Schultz, G. (1983). A nucleotide regulatory site for SRIF inhibition of adenylyl cyclase in S49 lymphoma cells.Nature 303177–178.PubMedGoogle Scholar
  31. Jones, D., and Reed, R. (1987). Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium.J. Biol. Chem. 26214241–14249.PubMedGoogle Scholar
  32. Kaupmann, K., Bruns, C., Hoyer, D., Seuwen, K., and Lubbert, H. (1993). mRNA distribution and second messenger coupling of four SRIF receptors expressed in brain.FEBS Lett 33153–5991.PubMedGoogle Scholar
  33. Kleuss, C., Scherubl, H., Hescheler, J., Schultz, G., and Wittig, B. (1993). Selectivity in signal transduction determined by gamma subunits of heterotrimeric G proteins.Science 259832–834PubMedGoogle Scholar
  34. Kleuss, C., Scherubl, H., Hescheler, J., Schultz, G., and Wittig, B. (1992). Different beta-subunits determine G-protein interaction with transmembrane receptors.Nature 358424–426PubMedGoogle Scholar
  35. Kleuss, C., Hescheler, J., Ewel, C., Rosenthal, W., Schultz, G., and Wittig, R. (1991). Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents.Nature 35343–48.PubMedGoogle Scholar
  36. Kluxen, F.-W., Bruns, C., and Lubbert, H. (1992). Expression cloning of a rat brain SRIF receptor cDNA.Proc. Natl. Acad. Sci. USA 894618–4622.PubMedGoogle Scholar
  37. Kong, H., DePaoli, A. M., Breder, C. D., Yasuda, K., Bell, G. I., and Reisine, T. (1994a). Differential expression of SRIF receptor subtypes SSTR1, SSTR2 and SSTR3 in adult rat brain, pituitary and adrenal gland. Analysis by RNA blotting andin situ hybridization.Neuroscience 59175–184.PubMedGoogle Scholar
  38. Kong, H., Raynor, K., and Reisine, T. (1994b). Amino acids in the cloned mouse kappa receptor that are necessary for high affinity agonist binding but not antagonist binding.Reg. Pep. 54155–156.Google Scholar
  39. Kong, H., Raynor, K., Yasuda, K., Moe, S., Portoghese, P., Bell, G. I., and Reisine, T. (1993a). A single residue, aspartic acid 95, in the delta opioid receptor specifies selective high affinity agonist binding.J. Biol. Chem. 26823055–23058.PubMedGoogle Scholar
  40. Kong, H., Raynor, K., Yasuda, K., Bell, G. I., and Reisine, T. (1993b). Mutation of an aspartate at residue 79 in the srif receptor subtype SSTR2 prevents Na+ regulation of agonist binding but does not affect apparent receptor/G protein association.Mol. Pharmacol. 44380–384.PubMedGoogle Scholar
  41. Kubota, A., Yamada, Y., Kagimoto, S., Shimatsu, A., Imamura, M., Tsuda, K., Imura, H., Seino, S., and Seino, Y. (1994). Identification of SRIF receptor subtypes and an implication for the efficacy of SRIF analog SMS 201-955 in treatment of human endocrine tumors.J. Clin. Invest. 931321–1325.PubMedGoogle Scholar
  42. Lamberts, S., Krenning, E., and Reubi, J.-C. (1991). The role of SRIF and its analogs in the diagnosis and treatment of tumors.Endocrine Rev. 12450–482.Google Scholar
  43. Law, S., Woulfe, D., and Reisine, T. (1995). SRIF receptor activation of cellular effector systems. Minireview.Cellular Signalling. 71–8.PubMedGoogle Scholar
  44. Law, S., Manning, D., and Reisine, T. (1991). Identification of the subunits of GTP binding proteins coupled to SRIF receptors.J. Biol. Chem. 26617885–17897.PubMedGoogle Scholar
  45. Law, S., Yasuda, K., Bell, G. I., and Reisine, T. (1993). Gia3 and Goa selectively associate with the cloned SRIF receptor subtype SSTR2.J. Biol. Chem. 26810721–10727.PubMedGoogle Scholar
  46. Law, S., Zaina, S., Sweet, R., Yasuda, K., Bell, G. I., Stadel, J., and Reisine, T. (1994). Gia1 selectively couples the SRIF receptor subtype SSTR3 to adenylyl cyclase: Identification of the functional domains of this alpha subunit necessary for mediating SRIF's inhibition of cAMP formation.Mol. Pharmacol. 45587–590.PubMedGoogle Scholar
  47. Liebow, C., Reilly, C., Serrano, M. and Schally, A. (1989). SRIF analogues inhibit the growth of pancreatic cancer by stimulating tyrosine phosphatase.Proc. Natl. Acad. Sci. 862003–2007.PubMedGoogle Scholar
  48. Mandarino, L., Stenner, D., Blanchard, W., Nissen, S., Gerich, J., Ling, N., Brazeau, P., Bohlen, P., Esch, F., and Guillemin, R. (1981). Selective effects of SRIF-14, -25, and -28 onin vitro insulin and glucagon secretion.Nature 29176–77.PubMedGoogle Scholar
  49. Martin, J.-L., Chesselet, M.-F., Raynor, K., Gonzales, C., and Reisine, T. (1991). Differential distribution of SRIF receptor subtypes in rat brain revealed by newly developed srif analogs.Neuroscience 41581–593.PubMedGoogle Scholar
  50. Matsumoto, K., Yokogoshi, Y., Fujinaka, Y., Zhang, C., and Saito, S. (1994). Molecular cloning and sequencing of porcine SRIF receptor 2.Biochem. Biophys. Res. Comm. 199298–305.PubMedGoogle Scholar
  51. Meriney, S., Gray, D., and Pilar, G. (1994). SRIF-induced inhibition of neuronal Ca++ current modulated by cGMP-dependent protein kinase.Nature 369336–339.PubMedGoogle Scholar
  52. Meyerhof, W., Wulfsen, I., Schonrock, C., Fehr, S., and Richter, D. (1992). Molecular cloning of a SRIF-28 receptor and comparison of its expression pattern with that of a SRIF-14 receptor in rat brain.Proc. Natl. Acad. Sci. USA 8910267–10271.PubMedGoogle Scholar
  53. Mihara, S., North, R., and Suprenant, A. (1987). SRIF increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurons.J. Physiol. 390335–355.PubMedGoogle Scholar
  54. Montminy, M., Goodman, R., and Habener, J. (1984). Primary structure of the gene encoding rat proprosomatostatin.Proc. Natl. Acad. Sci. 813337–3340.PubMedGoogle Scholar
  55. Moore, S., Madamba, S., Joels, M., and Siggins G. (1988). Somatostatin augments the M-current in hippocampal neurons.Science 239278–280.PubMedGoogle Scholar
  56. Murray-Whelan, R., and Schlegel, W. (1992). Brain SRIF receptor-G protein interaction: Ga C-terminal antibodies demonstrate coupling of the soluble receptor with\(G_{ia1{}^ - 3} \) but not Go.J. Biol. Chem. 2672960–2965.PubMedGoogle Scholar
  57. O'Carroll, A.-M., Lolait, S. J., Konig, M., and Mahan, L. C. (1992). Molecular cloning and expression of a pituitary SRIF receptor with preferential affinity for srif-28.Mol. Pharmacol. 42939–946.PubMedGoogle Scholar
  58. O'Carroll, A.-M., Raynor, K., Lolait, S. J., and Reisine, T. (1994). Characterization of cloned human SRIF receptor SSTR5.Mol. Pharmacol. 48291–298.Google Scholar
  59. Ozenberger, B., and Hadcock, J. (1995). A single amino acid substitution in the somatostatin receptor subtype 5 increases affinity for SRIF 14.Mol. Pharmacol. 4782–87.PubMedGoogle Scholar
  60. Pan, M., Florio, T., and Stork, P. (1992). G protein activation of a hormone-stimulated phosphatase in human tumor cells.Science 2561215–1217.PubMedGoogle Scholar
  61. Panetta, R., Greenwood, M. T., Warszynska, A., Demchyshyn, L. L., Day, R., Niznik, H. B., Srikant, C. B., and Patel, Y. C. (1994). Molecular cloning, functional characterization and chromosomal localization of a human SRIF receptor (SRIF receptor type 5) with preferential affinity for SRIF 28.Mol. Pharmacol. 45417–427.PubMedGoogle Scholar
  62. Patel, Y., Panetta, R., Escher, E., Greenwood, M., and Srikant, C. (1994). Expression of multiple SRIF receptor genes in AtT-20 cells.J. Biol. Chem. 2691506–1509.PubMedGoogle Scholar
  63. Perez, J., Rigo, M., Kaupmann, C., Bruns, C., Yasuda, K., Bell, G. I., Lubbert, H., and Hoyer, D. (1994). Localization of SRIF (SRIF) SSTR-1, SSTR-2 and SSTR-3 receptor mRNA in rat brain byin situ hybridization.Naunyn-Schmiedeberg's Arch. Pharmacol. 349145–160.Google Scholar
  64. Pradayrol, L., Jornvall, H., Mutt, V., and Ribet, A. 1980 N-terminally extended srif: The primary structure of SRIF-28.FEBS Lett. 10955–58.PubMedGoogle Scholar
  65. Raynor, K., and Reisine, T. (1992). SRIF receptors.Crit. Rev. Neurobiol. 16273–289.Google Scholar
  66. Raynor, K., and Reisine, T. (1989). Analogs of SRIF selectively label distinct subtypes of srif receptors in rat brain.J. Pharmacol. Exp. Ther. 251510–517.PubMedGoogle Scholar
  67. Raynor, K., Wang, H., Dichter, M., and Reisine, T. (1991). Subtypes of brain SRIF receptors couple to multiple cellular effector systems.Mol. Pharmacol. 40248–253.PubMedGoogle Scholar
  68. Raynor, K., Murphy, W., Coy, D., Taylor, J., Moreau, J.-P., Yasuda, K., Bell, G. I., and Reisine, T. (1993a). Cloned SRIF receptors: Identification of subtype selective peptides and demonstration of high affinity binding of linear peptides.Mol. Pharmacol. 43838–844.PubMedGoogle Scholar
  69. Raynor, K., O'Carroll, A.-M., Kong, H., Yasuda, K., Mahan, L., Bell, G. I., and Reisine, T. (1993b). Characterization of cloned SRIF receptors SSTR4 and SSTR5.Mol. Pharmacol. 44385–392.PubMedGoogle Scholar
  70. Reichlin, S. (1983). SRIF.New Engl J. Med. 3091495–1563.PubMedGoogle Scholar
  71. Reisine, T., Kong, H., Raynor, K., Yano, H., Takeda, J., Yasuda, K., and Bell, G. I. (1993). Splice variant of the SRIF receptor 2 subtype, SSTR2B, couples to adenylyl cyclase.Mol. Pharmacol. 441008–1015.PubMedGoogle Scholar
  72. Reisine, T., Tallent, M., and Dichter, M. (1994a). SRIF receptor subtypes endogenously expressed in AtT-20 cells couple to three different ionic currents.Soc. Neurosci. Abst. 20376.19135.Google Scholar
  73. Reisine, T., Heerding, J., and Raynor, K. (1994b). The third intracellular loop of the delta receptor is necessary for coupling to adenylyl cyclase and receptor desensitization.Reg. Pep. 54241–242.Google Scholar
  74. Rens-Domiano, S., Law, S. F., Yamada, Y., Seino, S., Bell, G.I., and Reisine, T. (1992). Pharmacological properties of two cloned SRIF receptors.Mol. Pharmacol. 4228–34.PubMedGoogle Scholar
  75. Rens-Domiano, S., and Reisine, T. (1992). Biochemical and functional properties of SRIF receptors.J. Neurochem. 581987–1996.PubMedGoogle Scholar
  76. Reubi, J. C., Schaer, J., Wagner, D. and Mengod, G. (1994). Expression and localization of SRIF receptor SSTR1, SSTR2, and SSTR3 mRNA in primary human tumors usingin situ hybridization.Cancer Res. 543455–3459.PubMedGoogle Scholar
  77. Reubi, J. C. (1984). Evidence for two SRIF-14 receptor types in rat brain.Neurosci. Lett. 49259–263.PubMedGoogle Scholar
  78. Rohrer, L., Raulf, F., Bruns, C., Buettner, R., Hofstaedter, F., and Schule, R. (1993). Cloning and characterization of a fourth human SRIF receptor.Proc. Natl. Acad. Sci. USA 904196–4200.PubMedGoogle Scholar
  79. Rossowski, W., and Coy, D. (1993). Potent inhibitory effects of a type four receptor selective SRIF analog on rat insulin release.Biochem. Biophys. Res. Commun. 197366–371.PubMedGoogle Scholar
  80. Rossowski, W., and Coy, D. (1994). Specific inhibition of rat pancreatic insulin and glucagon release by receptor-selective somatostatin analogs.Biochem. Biophys. Res. Commun. 205341–346.PubMedGoogle Scholar
  81. Rossowski, W., Gu, Z., Akarca, U., Jensen R., and Coy D.C. (1994). Characterization of somatostatin receptor subtypes controlling rat gastric acid and pancreatic amylase release.Peptides 151421–1424.PubMedGoogle Scholar
  82. Sengoles, S. (1994). The D2 dopamine receptor isoforms signal through distinct Gia proteins to inhibit adenylyl cyclase.J. Biol. Chem. 26923120–23127.PubMedGoogle Scholar
  83. Sevarino, K. Felix, R., Banks, C., Low, M., Montminy, M., Mandel, G., and Goodman, R. (1987). Cell-specific processing of preprosomatostatin in cultured neuroendocrine cells.J. Biol. Chem. 2624987–4993.PubMedGoogle Scholar
  84. Shaprio, M., and Hille, B. (1993). Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways.Neuron 1011–20.PubMedGoogle Scholar
  85. Srikant, C., and Patel, Y. (1981). Receptor binding of SRIF-28 is tissue specific.Nature 294259–260.PubMedGoogle Scholar
  86. Tahiri-Jouti, N., Cambillau, C., Viguerie, N., Vidal, C., Buscail, L., Saint Laurent, N., Vaysse, N., and Susini, C. (1992). Characterization of a membrane tyrosine phosphatase in AR42J cells: regulation by SRIF.Am. J. Physiol. 262G1007-G1014.PubMedGoogle Scholar
  87. Tallent, M., and Reisine, T. (1992). Gia1 selectively couples SRIF receptor to adenylyl cyclase in the pituitary cell line AtT-20.Mol. Pharmacol. 41452–455.PubMedGoogle Scholar
  88. Taylor, J., Theveniau, M., Bashirzdeh, R., Reisine, T., and Eden, P. (1994). Detection of SRIF receptor subtype 2 (SSTR2) in established tumors and tumor cell lines: Evidence for SSTR2 heterogeneity.Peptides 151229–1236.PubMedGoogle Scholar
  89. Theveniau, M., Rens-Domiano, S., Law, S., Rougon, G., and Reisine, T. (1992). Development of antisera against the rat brain SRIF receptor.Proc. Natl. Acad. Sci. 894314–4318.PubMedGoogle Scholar
  90. Tomura, H., Okajima, F., Akbar, M., Majid, M., Sho, K., and Kondo, Y. (1994). Transfected human SRIF receptor type 2, SSTR2, not only inhibits adenylyl cyclase but also stimulates phospholipase C and Ca++ mobilization.Biochem. Biophys. Res. Commun. 200986–992.PubMedGoogle Scholar
  91. Tran, V., Uhl, G., and Martin, J. (1985). Two types of SRIF receptors differentiated by cyclic SRIF analogs.Science 228492–495.PubMedGoogle Scholar
  92. Vanetti, M., Kouba, M., Wang, X., Vogt, G., and Hollt, V. (1992). Cloning and expression of a novel mouse SRIF receptor.FEBS Lett. 311290–294.PubMedGoogle Scholar
  93. Vanetti, M., Vogt, G., and Hollt, V. (1993). The two isoforms of the mouse SRIF receptor (mSSTR2A and mSSTR2B) differ in coupling efficiency to adenylate cyclase and in agonist-induced receptor desensitization.FEBS Lett 331260–266.PubMedGoogle Scholar
  94. Veber, D., Saperstein, R., Nutt, R., Friedinger, R., Brady, S., Curley, P., Perlow, D., Palveda, W., Colton, C., Zacchei, A., Tocco, D., Hoff, D., Vandlen, R., Gerich, J., Hall, L., Mandarino, L., Cordes, E., Anderson, P., and Hirschmann, R. (1984). A superactive cyclic hexapeptide analog of SRIF.Life Sci. 34 1371–1378.PubMedGoogle Scholar
  95. Wang, H., Bogen, C., Reisine, T., and Dichter, M. (1989). SRIF-14 and SRIF-28 induce opposite effects on potassium currents in rat neocortical neurons.Proc. Natl. Acad. Sci. USA 869616–9620.PubMedGoogle Scholar
  96. Wang, H., Reisine, T., and Dichter, M. (1990a). SRIF-14 and SRIF-28 inhibit calcium currents in rat neocortical neurons.Neuroscience 38335–342.PubMedGoogle Scholar
  97. Wang, H., Dichter, M., and Reisine, T. (1990b). Lack of cross-desensitization of SRIF-14 and SRIF-28 receptors coupled to potassium channels in rat neocortical neurons.Mol. Pharmacol. 38357–361.PubMedGoogle Scholar
  98. White, R., Schonbrunn, A., and Armstrong, D. (1991). SRIF stimulates Ca++ activated K+ channels through protein phosphorylation.Nature 351570–573.PubMedGoogle Scholar
  99. Woulfe, D., and Reisine, T. (1994). Splice variants of SSTR2 differentially couple to adenylyl cyclase.Soc. Neurosci Abst. 20907.Google Scholar
  100. Wulfsen, I., Meyerhof, W., Fehr, S., and Richter, D. (1993). Expression patterns of rat SRIF receptor genes in pre- and postnatal brain and pituitary.J. Neurochem. 611549–1552.PubMedGoogle Scholar
  101. Xu, Y., Song, H., Bruno, J. F., and Berelowitz, M. (1993). Molecular cloning and sequencing of a human SRIF receptor, hSSTR4.Biochem. Biophys. Res. Commun. 193648–652.PubMedGoogle Scholar
  102. Yamada, Y., Post, S. R., Wang, K., Tager, H. S., Bell, G. I., and Seino, S. (1992). Cloning and functional characterization of a family of human and mouse SRIF receptors expressed in brain, gastrointestinal tract, and kidney.Proc. Natl. Acad. Sci. USA 89251–255.PubMedGoogle Scholar
  103. Yamada, Y., Reisine, T., Law, S. F., Ihara, Y., Kubota, A., Kagimoto, S., Seino, M., Seino, Y., Bell, G. I., and Seino, S. (1993a). SRIF receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase.Mol. Endocrinol. 62136–2142.Google Scholar
  104. Yamada, Y., Stoffel, M., Espinosa, R., Xiang, K., Seino, M., Seino, S., Le Beau, M. M., and Bell, G. I. (1993b). Human SRIF receptor genes: localization to human chromosomes 14, 17 and 22 and identification of simple tandem repeat polymorphisms.Genomics 15 449–452.PubMedGoogle Scholar
  105. Yasuda, K., Rens-Domiano, S., Breder, C. D., Law, S. F., Saper, C. B., Reisine, T., and Bell, G. I. (1992). Cloning of a novel SRIF receptor, SSTR3, that is coupled to adenylyl cyclase.J. Biol. Chem. 26720422–20428.PubMedGoogle Scholar
  106. Zeggari, M., Esteve, J., Rauly, I., Cambillau, C., Mazargull, H., Dufresne, M., Pradayrol, L., Chayvialle, J., Vaysse, N., and Susini, C. (1994). Co-purification of a protein tyrosine phosphatase with activated somatostatin receptors from rat pancreatic acinar membranes.Biochem. J. 303441–448.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Terry Reisine
    • 1
  1. 1.Department of PharmacologyUniversity of Pennsylvania School of MedicinePhiladelphia

Personalised recommendations