Theoretical and Mathematical Physics

, Volume 105, Issue 3, pp 1539–1545 | Cite as

Phase space geometry of constrained systems

  • V. P. Pavlov
  • A. O. Starinetz


Invariant descriptions of phase space and the action principle for finite-dimensional constrained systems are given.


Phase Space Action Principle Space Geometry Invariant Description Phase Space Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac,Can. J. Math.,2, 129 (1950).Google Scholar
  2. 2.
    L. D. Faddeev,Teor. Mat. Fiz.,1, 3–18 (1969).Google Scholar
  3. 3.
    A. M. Vershik and L. D. Faddeev,Dokl. Akad. Nauk SSSR,202, 555–557 (1972).Google Scholar
  4. 4.
    A. Hanson, T. Regge, and C. Teitelboim,Constrained Hamiltonian systems, Acad. Nat. dei Lincei, Roma (1976).Google Scholar
  5. 5.
    K. Sundermeyer,Constrained dynamics (Lecture Notes in Physics), Vol. 169 (1982).Google Scholar
  6. 6.
    G. Marmo, N. Mukunda, and J. Samuel,Riv. Nuovo Cimento,6, 2 (1983).Google Scholar
  7. 7.
    G. Marmo, E. J. Saletan, A. Simoni, and B. Vitale,Dynamic Systems, A Differential Geometric Approach to Symmetry and Reduction, Wiley, Chichester (1985).Google Scholar
  8. 8.
    C. Battle, J. Gomis, J. M. Pons, and N. Roman,J. Math Phys.,28, 1117 (1987).Google Scholar
  9. 9.
    V. P. Pavlov,Teor. Mat. Fiz.,92, 451–456 (1992).Google Scholar
  10. 10.
    V. P. Pavlov,Teor. Mat. Fiz.,104, 304–309 (1995).Google Scholar
  11. 11.
    V. I. Arnold,Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  12. 12.
    B. A. Dubrovin, M. Giordano, G. Marmo, and A. Simoni,Int. J. Mod. Phys. A,8, 3747–3772 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. P. Pavlov
    • 1
  • A. O. Starinetz
    • 1
  1. 1.Russian Foundation for Basic Research, V. A. Steklov Mathematical Institute of the Russian Academy of Sciences, Independent Moscow UniversityUSSR

Personalised recommendations