Advertisement

Theoretical and Mathematical Physics

, Volume 108, Issue 2, pp 1019–1045 | Cite as

On the connection between discontinuous step-like and smooth kink-type classical solutions in quantum field theory

  • K. A. Sveshnikov
  • P. K. Silaev
Article

Abstract

A nonperturbative procedure for subtracting singularities caused by finite discontinuities of the field configurations is suggested. This procedure is applied to the Lorentz-covariant quantization of(1+1)-dimensional topological kinks. In the course of this procedure, “quantum copies” of a classical kink naturally appear. These copies have the same topological charge but have negligibly small sizes and masses because the subtraction procedure eliminates divergences caused by the field differentiations at the discontinuity points. These effects are investigated in detail for those(1+1)-dimensional scalar field models where classical kinks exist.

Keywords

Field Theory Quantum Field Theory Scalar Field Classical Solution Field Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Rajaraman,Solitons and Instantons, North-Holland, Amsterdam (1982).Google Scholar
  2. 2.
    K. F. Liu (ed.),Chiral Solitons, World Scientific, Singapore (1987).Google Scholar
  3. 3.
    L. Wilets,Nontopological Solitons, World Scientific, Singapore (1989).Google Scholar
  4. 4.
    T. D. Newton and E. P. Wigner,Rev. Mod. Phys.,21, 400 (1949).Google Scholar
  5. 5.
    G. Semenoff, H. Matsumoto, and H. Umezawa,J. Math. Phys.,22, 2208 (1981);Progr. Theor. Phys.,67, 1619 (1982).Google Scholar
  6. 6.
    K. Sveshnikov,Nucl. Phys. B,405, 451 (1993);Int. J. Mod. Pys. A,9, 2586 (1994).Google Scholar
  7. 7.
    J.-L. Gervais, A. Jevicki, and B. Sakita,Phys. Rev. D,12, 1038 (1975).Google Scholar
  8. 8.
    E. Tomboulis,Phys. Rev. D,12, 1678 (1975).Google Scholar
  9. 9.
    N.-H. Christ and T. D. Lee,Phys. Rev. D,12, 1606 (1975).Google Scholar
  10. 10.
    A. Hosoya and T. Kikkawa,Nucl. Phys. B,101, 271 (1975).Google Scholar
  11. 11.
    E. Tomboulis and T. T. Woo,Ann. of Phys. (N.Y.),98, 1 (1976).Google Scholar
  12. 12.
    X. Yang and J. A. Parmentola,Mod. Phys. Lett. A,4, 2509 (1989).Google Scholar
  13. 13.
    P. Jain,Phys. Rev. D,41, 3273 (1990);Mod. Phys. Lett. A,6, 2366 (1991).Google Scholar
  14. 14.
    J. A. Parmentola, X. Yang, and I. Zahed,Ann. of Phys. (N.Y.),209, 127 (1991).Google Scholar
  15. 15.
    P. Jain,Phys. Rev. D,44, 3982 (1991).Google Scholar
  16. 16.
    O. Steinmann,Nucl. Phys. B,131, 459 (1977);145, 141 (1978).Google Scholar
  17. 17.
    H. Matsumoto, N. J. Papastamatiou, H. Umezawa, and M. Umezawa,Phys. Rev. D,23, 1339 (1981).Google Scholar
  18. 18.
    H. Matsumoto, N. J. Papastamatiou, G. Semenoff, and H. Umezawa,Phys. Rev. D,24, 406 (1981).Google Scholar
  19. 19.
    K. A. Sveshnikov,Teor. Mat. Fiz.,55, 361–384 (1983);74, 373–391 (1988).Google Scholar
  20. 20.
    O. A. Khrustalev and K. A. Sveshnikov,Teor. Mat. Fiz.,93, 384–402 (1992).Google Scholar
  21. 21.
    V. B. Tverskoi,Teor. Mat. Fiz.,68, 338–349 (1986).Google Scholar
  22. 22.
    A. Calogeracos,Phys. Rev. D,42, 573 (1990).Google Scholar
  23. 23.
    F. Aldabe, D. R. Bess, and N. N. Scoccola,Phys. Lett. B,293, 81 (1992);304, 98 (1993).Google Scholar
  24. 24.
    J. P. Garrahan, M. Kruczenski, G. L. Schat, D. R. Bess, and N. N. Scoccola,Phys. Rev. D,51, 2950 (1995).Google Scholar
  25. 25.
    M. A. Lavrent'ev and B. V. Shabat,Theory of Functions of a Complex Variable [in Russian], GITTL, Moscow (1958).Google Scholar
  26. 26.
    J. Goldstone and R. Jackiw,Phys. Rev. D,11, 1486 (1975).Google Scholar
  27. 27.
    G. t'Hooft, in:The Whys of Subnuclear Physics, Plenum Press, New York (1979).Google Scholar
  28. 28.
    K. Sveshnikov,Phys. Lett. A,136, 1 (1989);Teor. Mat. Fiz.,82, 55–65 (1990).Google Scholar
  29. 29.
    V. G. Kadyshevskii, Z. M. Mir-Kasimov, and N. B. Skachkov,Fiz. Elem. Chast. At. Yadra,2, Dubna, 637 (1972).Google Scholar
  30. 30.
    E. K. Sklyanin, L. A. Takhtajan, and L. D. Faddeev,Teor. Mat. Fiz.,40, 194–220 (1979).Google Scholar
  31. 31.
    I. Zahed and G. E. Brown,Phys. Rep.,142, 1 (1986).Google Scholar
  32. 32.
    G. Holzwarth and B. Schwesinger,Rep. Progr. Phys.,49, 825 (1986).Google Scholar
  33. 33.
    V. G. Makhan'kov, Yu. P. Rybakov, and V. I. Sanyuk,Usp. Fiz. Nauk,162, 1 (1992).Google Scholar
  34. 34.
    P. Jain, J. Schechter, and R. Sorkin,Phys. Rev. D,39, 998 (1989);41, 3855 (1990).Google Scholar
  35. 35.
    J. A. Mignaco and S. Wulck,Phys. Rev. Lett.,62, 1449 (1989).Google Scholar
  36. 36.
    N. Chepilko, K. Fujii, and A. Kobushkin,Phys. Rev. D,43, 2391 (1991);44, 3249.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • K. A. Sveshnikov
    • 1
  • P. K. Silaev
    • 1
  1. 1.Department of Physics and Institute of Theoretical Problems of the MicroworldMoscow State UniversityUSSR

Personalised recommendations