Theoretical and Mathematical Physics

, Volume 107, Issue 3, pp 835–847

Faddeev differential equations as a spectral problem for a nonsymmetric operator

  • S. L. Yakovlev
Article

Abstract

We consider a nonsymmetric matrix operator whose eigenvalue problem is the system of Faddeev differential equations for a three-particle system. For this operator and its adjoint, the resolvents are represented in terms of Faddeev T-matrix components of the three-particle Schrödinger operator. On the basis of these representations, the invariant spaces of the operators under consideration are investigated and their eigenfunctions are determined. The biorthogonality and completeness of the eigenfunction system are proved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Newton,Scattering Theory of Waves and Particles, McGraw-Hill, New York (1966).Google Scholar
  2. 2.
    L. D. Faddeev,Tr. Mat. Inst. Akad. Nauk SSSR,69, 1–125 (1963).Google Scholar
  3. 3.
    S. P. Merkuriev,Teor. Mat. Fiz.,32, 187 (1977).Google Scholar
  4. 4.
    S. P. Merkuriev,Yad. Fiz.,24, 289 (1976).Google Scholar
  5. 5.
    S. P. Merkuriev,Zap. Nauchn. Sem. LOMI,77, 148 (1978).Google Scholar
  6. 6.
    S. P. Merkuriev,Dokl. Akad. Nauk SSSR,241, 68 (1978).Google Scholar
  7. 7.
    S. P. Merkuriev,Teor. Mat. Fiz.,38, 201 (1979).Google Scholar
  8. 8.
    S. P. Merkuriev,Lett. Math. Phys.,3, 141 (1979).Google Scholar
  9. 9.
    S. P. Merkuriev,Ann. Phys.,130, 395 (1980).Google Scholar
  10. 10.
    S. P. Merkuriev and L. D. Faddeev,Quantum Scattering Theory for Multi-Particle Systems [in Russian], Moscow, Nauka (1985).Google Scholar
  11. 11.
    H. P. Noyes and H. Fiedeldey, in:Three Particle Scattering in Quantum Mechanics (J. Gillespie and J. Nuttal, eds.), New York (1968)Google Scholar
  12. 12.
    S. P. Merkuriev, C. Gignoux, and A. Laverne,Ann. Phys.,99, 20 (1976).Google Scholar
  13. 13.
    S. K. Adhikari and W. Glöckle,Phys. Rev.,C19, 616 (1979).Google Scholar
  14. 14.
    J. F. Friar, B. F. Gibson, and G. L. Paine,Phys. Rev.,C22, 284 (1980).Google Scholar
  15. 15.
    V. V. Pupyshev,Teor. Mat. Fiz.,81, 86 (1989);Phys. Lett.,A140, 284 (1989).Google Scholar
  16. 16.
    J. W. Evans and D. K. Hoffman,J. Math. Phys.,22, 2858 (1981).Google Scholar
  17. 17.
    S. L. Yakovlev,Teor. Mat. Fiz.,102, 323 (1995).Google Scholar
  18. 18.
    V. I. Smirnov,A Course in Higher Mathematics [in Russian], Vol. 5, OGIZ, Moscow (1947).Google Scholar
  19. 19.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. II,Fourier Analysis, Self-Adjointness. Academic Press, New York (1975).Google Scholar
  20. 20.
    W. Glöckle,Nucl. Phys. A141, 620 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. L. Yakovlev
    • 1
  1. 1.St. Petersburg State UniversityUSSR

Personalised recommendations