Theoretical and Mathematical Physics

, Volume 108, Issue 3, pp 1160–1163 | Cite as

Deformations of triple-Jordan systems and integrable equations

  • S. I. Svinolupov
  • V. V. Sokolov


Explicit formulas for deformations of vector and matrix triple-Jordan systems are found. From these solutions, new examples of integrable multified systems are obtained.


Integrable Equation Explicit Formula Multified System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Svinolupov,Commun. Math. Phys.,143, 559–575 (1992).Google Scholar
  2. 2.
    S. I. Svinolupov and R. I. Yamilov,Phys. Lett. A,160, 548–552 (1991).Google Scholar
  3. 3.
    S. I. Svinolupov,Funkts. Anal. Prilozhen.,27, No. 4, 40–53 (1993).Google Scholar
  4. 4.
    S. I. Svinolupov and V. V. Sokolov,Teor. Mat. Fiz.,100, 214–218 (1994).Google Scholar
  5. 5.
    K. Meyberg,Math. Z.,115, No. 1, 58–78 (1970).Google Scholar
  6. 6.
    E. Neher,Lect. Notes Math.,1280 (1986).Google Scholar
  7. 7.
    O. Loos,Bull. Amer. Math. Soc.,80, No. 1, 67–71 (1974).Google Scholar
  8. 8.
    O. V. Mel'nikov, V. N. Remeslennikov, V. A. Roman'kov, L. A. Skornyakov, and I. P. Shestakov,General Algebra [in Russian], Vol. 1, Nauka, Moscow (1990).Google Scholar
  9. 9.
    M. Koecher,Jordan Algebras and Their Applications, Univ. Minnesota, Minneapolis (1962).Google Scholar
  10. 10.
    S. I. Svinolupov and V. V. Sokolov,Mat. Zam.,53, No. 3, 115–121 (1993).Google Scholar
  11. 11.
    V. V. Sokolov and S. I. Svinolupov,Acta Appl. Math.,41 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. I. Svinolupov
  • V. V. Sokolov
    • 1
  1. 1.Mathematical Institute of the Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations