Hyperfine Interactions

, Volume 90, Issue 1, pp 477–483 | Cite as

A comparison of the bonding in organoiron clusters

  • Margaret L. Buhl
  • Gary J. Long
Chemical Structure and Bonding

Abstract

The Mössbauer effect hyperfine parameters and the results of the Fenske-Hall molecular orbit (mo) calculations have been used to study the electronic properties of trinuclear iron, tetranuclear iron butterfly, Fe-Co, and Fe-Cu carbonyl clusters. The more negative Fe charge and the larger Fe 4s population in an Fe(CO)4 fragment as compared with that in an Fe(CO)3 or an Fe(CO)2 fragment is a result of the CO ligands rather than the near-neighbor metals. The clusters which contain heterometals have more negative isomer shifts. The isomer shift correlated well with the sum of the Fe 4s orbital population and the Zeff these electrons experience. The mo wave functions and the atomic charges generally give a larger calculated ΔEQ than is observed, indicating the need to include Sternheimer factors in the calculation. The valence contribution dominates the EFG.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.L. Buhl, G.J. Long and J.F. O'Brien, Organomet. 12(1993)283.Google Scholar
  2. [2]
    C.G. Benson, G.J. Long, J.W. Kolis and D.F. Shriver, J. Am. Chem. Soc. 107(1985)5297.Google Scholar
  3. [3]
    G.J. Long and J.F. O'Brien, Hyp. Int. 40(1988)101.Google Scholar
  4. [4]
    M.L. Buhl, G.J. Long and J.F. O'Brien, Organomet. 12(1993)1902.Google Scholar
  5. [5]
    C.G. Benson, G.J. Long, J.S. Bradley, J.W. Kolis and D.F. Shriver, J. Am. Chem. Soc. 108(1986)1898.Google Scholar
  6. [6]
    M.L. Buhl and G.J. Long, J. Organomet. Chem. 461(1993)177.Google Scholar
  7. [7]
    M.L. Buhl, G.J. Long and G. Doyle, J. Organomet. Chem. 461(1993)187.Google Scholar
  8. [8]
    M.L. Buhl, G.J. Long and G. Doyle, Hyp. Int. 28(1986)793.Google Scholar
  9. [9]
    M.L. Buhl, Ph.D. Thesis, University of Missouri-Rolla (1993).Google Scholar
  10. [10]
    R.F. Fenske, Pure Appl. Chem. 27(1971)61.Google Scholar
  11. [11]
    M.B. Hall and R.F. Fenske, Inorg. Chem. 11(1972)768.Google Scholar
  12. [12]
    F. Herman and S. Skillman,Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar
  13. [13]
    B.E. Bursten and R.F. Fenske, J. Chem. Phys. 67(1977)3138.Google Scholar
  14. [14]
    See instructions provided with the Fenske-Hall code and B.E. Bursten, R.J. Jensen and R.F. Fenske, J. Chem. Phys. 68(1978)3320.Google Scholar
  15. [15]
    D. Guenzburger, E.M.B. Saitovitch, M.A. De Paoli and H. Manela, J. Chem. Phys. 80(1984)735.Google Scholar
  16. [16]
    J.E. Huheey,Inorganic Chemistry: Principles of Structure and Reactivity, 3rd Ed. (Harper and Row, New York, 1983) pp. 37–38.Google Scholar
  17. [17]
    The plot of the iron 4s population plus the Clementi and Raimondi effective nuclear charge, fig. 2, has a slope of −0.88 mm/s per electron, an intercept of 4.77 mm/s, and a correlation of 0.86.Google Scholar
  18. [18]
    R. Ingalls, Phys. Rev. A787(1964)133.Google Scholar
  19. [19]
    N.N. Greenwood and T.C. Gibb,Mössbauer Spectroscopy (Chapman and Hall, London, 1971) pp. 49–50.Google Scholar
  20. [20]
    A. Trautwein, F.E. Harris and I. Dezsi, Theor. Chim. Acta (Berl.) 35(1974)231.Google Scholar
  21. [21]
    A. Trautwein and F.E. Harris, Theor. Chim. Acta (Berl.) 30(1973)45.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • Margaret L. Buhl
    • 1
  • Gary J. Long
    • 1
  1. 1.Department of ChemistryUniversity of Missouri-RollaRollaUSA

Personalised recommendations