Hyperfine Interactions

, Volume 90, Issue 1, pp 243–264 | Cite as

The Mössbauer effect and collective motions in glass-forming liquids and polymeric networks

  • G. Ulrich Nienhaus
  • Fritz Parak
Invited Papers

Abstract

Glass-forming liquids, synthetic polymers and biopolymers share essential properties. Dynamic processes in these complex systems are characterized by cooperative motions with wide distributions of time scales, which manifest themselves in broad quasielastic lines in the Mössbauer spectrum. In this article, the application of the Mössbauer effect to the study of structural dynamics in complex systems is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Jäckle, Rep. Prog. Phys. 49(1986)171.Google Scholar
  2. [2]
    J.C. Maxwell,Collected Works, Vol. 2 (Cambridge University Press, Cambridge, 1980).Google Scholar
  3. [3]
    D.W. Davidson and R.H. Cole, J. Chem. Phys. 19(1951)1484.Google Scholar
  4. [4]
    T.D. Davis and T.A. Litovitz,Physical Acoustics, Vol. 2B (Academic Press, New York, 1965).Google Scholar
  5. [5]
    Y.H. Jeong, S.R. Nagel and S. Bhattacharya, Phys. Rev. A34(1986)602.Google Scholar
  6. [6]
    W.T. Laughlin and D.R. Uhlmann, J. Phys. Chem. 76(1972)2317.Google Scholar
  7. [7]
    Y.H. Jeong, Phys. Rev. A36(1987)766.Google Scholar
  8. [8]
    N.O. Birge, Phys. Rev. B34(1986)1631.Google Scholar
  9. [9]
    W. Schnauss, F. Fujara and H. Sillescu, J. Chem. Phys. 97(1992)1378.Google Scholar
  10. [10]
    D. Richter, A.J. Dianoux, W. Petry and J. Teixeira (eds.),Dynamics of Disordered Materials (Springer, Berlin, 1989).Google Scholar
  11. [11]
    R. Kubo, Rep. Prog. Phys. 29(1966)255.Google Scholar
  12. [12]
    D.S.P. Bunbury, J.A. Elliott, H.E. Hall and J.M. Williams, Phys. Lett. 6(1963)34.Google Scholar
  13. [13]
    P.P. Craig and N. Sutin, Phys. Rev. Lett. 11(1963)460.Google Scholar
  14. [14]
    J.A. Elliott, H.E. Hall and D.S.P. Bunbury, Proc. Phys. Soc. 89(1966)595.Google Scholar
  15. [15]
    J.H. Jensen, Phys. Kondens. Mat. 13(1981)273.Google Scholar
  16. [16]
    A. Abras and J.G. Mullen, Phys. Rev. A6(1972)2343.Google Scholar
  17. [17]
    I. Heilmann, B. Olsen and J.H. Jensen, J. Phys. C7(1974)4355.Google Scholar
  18. [18]
    D.C. Champeney, E.S.M. Higgy and R.G. Ross, J. Phys. C8(1975)507.Google Scholar
  19. [19]
    S.L. Ruby, J.C. Love, P.A. Flynn and B.J. Zabransky, Appl. Phys. Lett. 27(1975)320.Google Scholar
  20. [20]
    A. Vasquez and P.A. Flynn, J. Chem. Phys. 72(1980)1958.Google Scholar
  21. [21]
    F.J. Litterst, Nucl. Instr. Meth. 199(1982)87.Google Scholar
  22. [22]
    F. Parak, M. Fischer and G.U. Nienhaus, J. Mol. Liq. 42(1989)145.Google Scholar
  23. [23]
    G.U. Nienhaus, H. Frauenfelder and F. Parak, Phys. Rev. B43(1991)3345.Google Scholar
  24. [24]
    J. Huck, A. Bondeau, G. Noyel and L. Jorat, IEEE Trans. Electr. Insul. 23(1988)615.Google Scholar
  25. [25]
    C.A. Angell, J. Non-Cryst. Solids 73(1985)1.Google Scholar
  26. [26]
    H. Vogel, Phys. Z. 22(1921)645.Google Scholar
  27. [27]
    G.S. Fulcher, J. Am. Ceram. Soc. 8(1925)339.Google Scholar
  28. [28]
    G. Adam and J.H. Gibbs, J. Chem. Phys. 43(1965)139.Google Scholar
  29. [29]
    M.H. Cohen and D. Tumbull, J. Chem. Phys. 31(1959)1164.Google Scholar
  30. [30]
    M.H. Cohen and G.S. Grest, Phys. Rev. B20(1979)1077.Google Scholar
  31. [31]
    R. Richert and H. Bässler, J. Phys.: Condens. Matter 2(1990)2273.Google Scholar
  32. [32]
    H. Bässler, Phys. Rev. Lett. 58(1987)767.Google Scholar
  33. [33]
    R. Zwanzig, Proc. Natl. Acad. Sci. USA 85(1988)2029.Google Scholar
  34. [34]
    J.D. Bryngelson and P.G. Wolynes, J. Phys. Chem. 93(1989)6902.Google Scholar
  35. [35]
    P.K. Dixon, L. Wu, S.R. Nagel, B.D. Williams and J.P. Carini, Phys. Rev. Lett. 65(1990)1108.Google Scholar
  36. [36]
    W. Götze, in:Liquids, Freezing, and the Glass Transition, eds. J.P. Hansen, D. Levesque and J. Zinn-Justin (North-Holland, Amsterdam, 1991) p. 287.Google Scholar
  37. [37]
    W. Kauzmann, Rev. Mod. Phys. 14(1942)12.Google Scholar
  38. [38]
    P. Debye,Polar Molecules (Dover, New York, 1945).Google Scholar
  39. [39]
    R. Kohlrausch, Pogg. Ann. Phys. 91(1854)179.Google Scholar
  40. [40]
    C.P. Lindsey and G.D. Patterson, J. Chem. Phys. 73(1980)3348.Google Scholar
  41. [41]
    G.P. Johari, J. Chem. Phys. 58(1973)1766.Google Scholar
  42. [42]
    T.R. Kirkpatrick, D. Thirumalai and P.G. Wolynes, Phys. Rev. A40(1989)1045.Google Scholar
  43. [43]
    M. Goldstein, J. Chem. Phys. 51(1969)3728.Google Scholar
  44. [44]
    R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Phys. Rev. Lett. 53(1984)958.Google Scholar
  45. [45]
    K.S. Singwi and A. Sjölander, Phys. Rev. 119(1960)863.Google Scholar
  46. [46]
    K.S. Singwi and A. Sjölander, Phys. Rev. 120(1960)1093.Google Scholar
  47. [47]
    S. Chandresekhar, Rev. Mod. Phys. 15(1943)1.Google Scholar
  48. [48]
    G.U. Nienhaus, A.S. Plachinda, M. Fischer, V.I. Khromov, F. Parak, I.P. Suzdalev and V.I. Goldanskii, Hyp. Int. 56(1990)1471.Google Scholar
  49. [49]
    W. Götze and G.M. Vujicic, Z. Phys. B76(1989)175.Google Scholar
  50. [50]
    D.A. Pinnow, S.J. Candau, J.T. La Macchia and T.A. Litovitz, J. Acoust. Soc. Am. 43(1968)131.Google Scholar
  51. [51]
    G.E. McDuffie, Jr., R.G. Quinn and T.A. Litovitz, J. Chem. Phys. 37(1962)239.Google Scholar
  52. [52]
    P.K. Dixon, S.R. Nagel and D.A. Weitz, J. Chem. Phys. 94(1991)6924.Google Scholar
  53. [53]
    A.S. Plachinda, V.E. Sedov, V.I. Khromov, I.P. Suzdalev, V.I. Goldanskii, G.U. Nienhaus and F. Parak, Phys. Rev. B45(1992)7716.Google Scholar
  54. [54]
    D. Beece, L. Eisenstein, H. Frauenfelder, D. Good, M.C. Marden, L. Reinisch, A.H. Reynolds, L.B. Sorensen and K.T. Yue, Biochem. 19(1980)5147.Google Scholar
  55. [55]
    I. Havlicek, M. Ilavsky and J. Hrouz, J. Polym. Sci. 16(1978)653.Google Scholar
  56. [56]
    F. Parak, J. Heidemeier and G.U. Nienhaus, Hyp. Int. 40(1988)147.Google Scholar
  57. [57]
    S. Reich and I. Michaeli, J. Chem. Phys. 56(1972)2350.Google Scholar
  58. [58]
    R. Meister, C.J. Marhoeffer, R. Sciamanda, L. Cotter and T. Litovitz, J. Appl. Phys. 31(1960)854.Google Scholar
  59. [59]
    H. Frauenfelder, G.A. Petsko and D. Tsemoglou, Nature 280(1979)558.Google Scholar
  60. [60]
    H. Frauenfelder, F. Parak and R.D. Young, Ann. Rev. Biophys. Biophys. Chem. 17(1988)451.Google Scholar
  61. [61]
    V.I. Goldanskii, Yu.F. Krupyanskii and V.N. Fleurov, Dokl. Akad. Nauk SSSR 272(1983)978.Google Scholar
  62. [62]
    G.P. Singh, H.J. Schink, H. von Löhneysen, F. Parak and S. Hunklinger, Z. Phys. B55(1984)23.Google Scholar
  63. [63]
    I.E.T. Iben, D. Braustein, W. Doster, H. Frauenfelder, M.K. Hong, J.B. Johnson, S. Luck, P. Ormos, A. Schulte, P.J. Steinbach, A.H. Xie and R.D. Young, Phys. Rev. Lett. 62(1989)1916.Google Scholar
  64. [64]
    F. Parak, J. de Phys. 41(1980)C1–71.Google Scholar
  65. [65]
    H. Keller and P.G. Debrunner, Phys. Rev. Lett. 45(1980)68.Google Scholar
  66. [66]
    F. Parak, E.W. Knapp and D. Kucheida, J. Mol. Biol. 161(1982)177.Google Scholar
  67. [67]
    F. Parak and G.U. Nienhaus, J. Non-Cryst. Solids 131–133(1991)362.Google Scholar
  68. [68]
    F. Parak, H. Hartmann and G.U. Nienhaus,Proc. of Life Sciences: Protein Structure; Molecular and Electronic Reactivity, eds. B. Austin, E. Buhks, B. Chance, D. De Vault, P.L. Dutton, H. Frauenfelder and V.I. Goldanskii (Springer, New York, 1987) p. 65.Google Scholar
  69. [69]
    W. Doster, S. Cusack and W. Petry, Nature 337(1989)754.Google Scholar
  70. [70]
    Y. Singh, J.P. Stoessel and P.G. Wolynes, Phys. Rev. Lett. 54(1985)1059.Google Scholar
  71. [71]
    T.R. Kirkpatrick and P.G. Wolynes, Phys. Rev. A35(1987)3072.Google Scholar
  72. [72]
    E. Leutheusser, Phys. Rev. A29(1984)2765.Google Scholar
  73. [73]
    U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C17(1984)5915.Google Scholar
  74. [74]
    L. Sjögren and W. Götze, in ref. [10], p. 19.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • G. Ulrich Nienhaus
    • 1
  • Fritz Parak
    • 2
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Institut für Molekulare BiophysikJohannes-Gutenberg-Universität MainzMainzGermany

Personalised recommendations