Advertisement

Hyperfine Interactions

, Volume 86, Issue 1, pp 467–472 | Cite as

Hebel-Slichter peak and superconducting energy gap in Rb3C60 observed by muon spin relaxation

  • W. A. Macfarlane
  • R. F. Kiefl
  • K. H. Chow
  • S. Dunsiger
  • T. L. Duty
  • T. M. S. Johnston
  • J. W. Schneider
  • J. Sonier
  • L. Brard
  • R. M. Strongin
  • J. E. Fischer
  • A. B. SmithJr
Session 4. Superconductors

Abstract

Muon spin relaxation has been observed in both the normal and superconducting states of Rb3C60 (Tc=29.3K). The field dependence of theT1 spin relaxation rate is due to muonium undergoing spin-exchange scattering with conduction electrons, making this the first observation of muonium in a metal. The temperature dependence ofT 1 −1 shows a Hebel-Slichter coherence peak just belowTc which is not seen in13C spin relaxation. The peak can be fit assuming spin relaxation due to interaction with the quasiparticle excitations of a BCS superconductor provided the density of states is broadened relative to that of BCS. Such fits yield a value for the zero temperature energy gap, Δ0/k B , of 53(4)K, consistent with weak-coupling BCS.

Keywords

Thin Film Coherence Conduction Electron Relaxation Rate Field Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.F. Hebardet al., Nature350 (1991) 600Google Scholar
  2. [1]a
    M.J. Rosseinskyet al., Phys. Rev. Letts.66 (1991) 2830Google Scholar
  3. [1]b
    K. Holczeret al., Science252 (1991) 1154.Google Scholar
  4. [2]
    Z. Zhang, C.C Chen, S.P. Kelty, H. Dai and C.M. Leiber, Nature353 (1991) 353.Google Scholar
  5. [3]
    L. DeGiorgiet al., Phys. Rev. Letts.69 (1992) 2987.Google Scholar
  6. [4]
    R. Tyckoet al., Phys. Rev. Letts.68 (1992) 1912.Google Scholar
  7. [5]
    W. Krätchmer, L.D. Lamb, K. Fostiropoulis and D.R. Huffman, Nature347 (1990) 354.Google Scholar
  8. [6]
    J.P. McCauleyet al., J. Am. Chem. Soc.113 (1991) 8537.Google Scholar
  9. [7]
    B. Mühlschlegel, Z. Phys.155 (1959) 313.Google Scholar
  10. [8]
    R.F. Kieflet al., Phys. Rev. Letts.68 (1992) 1347.Google Scholar
  11. [9]
    R.F. Kieflet al., Phys. Rev. Letts.69 (1992) 2005.Google Scholar
  12. [10]
    I.G. Ivanter and V.P. Smilga, Sov. Phys. JETP33 (1971) 1070Google Scholar
  13. [10]a
    M. Senba, J. Phys.B24 (1991) 3531Google Scholar
  14. [10]b
    K.H. Chow,et al., Phys. Rev.B, forthcoming.Google Scholar
  15. [11]
    D.E. McLauglin, “Magnetic Resonance in the Superconducting State”, in:Solid State Physics Vol.31 (Academic, New York, 1976) pp. 1–69.Google Scholar
  16. [12]
    A.P. Ramirezet al., Phys. Rev. Letts.69 (1992) 1687.Google Scholar
  17. [13]
    R.C. Dyneset al., Phys. Rev. Letts.41 (1978) 1509.Google Scholar
  18. [14]
    R. F. Kieflet al., Phys. Rev. Letts., forthcoming.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • W. A. Macfarlane
    • 1
  • R. F. Kiefl
    • 1
  • K. H. Chow
    • 1
  • S. Dunsiger
    • 1
  • T. L. Duty
    • 1
  • T. M. S. Johnston
    • 1
  • J. W. Schneider
    • 1
  • J. Sonier
    • 1
  • L. Brard
    • 2
    • 4
  • R. M. Strongin
    • 2
    • 4
  • J. E. Fischer
    • 2
    • 3
  • A. B. SmithJr
    • 2
    • 4
  1. 1.TRIUMF, Department of Physics, Canadian Institute for Advanced ResearchUniversity of British ColumbiaVancouverCanada
  2. 2.Laboratory for Research on the Sturcture of MatterUniversity of PennsylvaniaPhiladelphia
  3. 3.Materials Science DepartmentUniversity of PennsylvaniaPhiladelphia
  4. 4.Chemistry DepartmentUniversity of PennsylvaniaPhiladelphia

Personalised recommendations