Theoretical and Mathematical Physics

, Volume 104, Issue 3, pp 1120–1128 | Cite as

Solution by the Einstein—Infeld—Hoffmann method of the problem of the motion of color particles and the dynamics of a gauge field

  • M. V. Gorbatenko


The Einstein—Infeld—Hoffmann (EIH) method is used to solve the problem of self-consistent description of the dynamics of the gravitational field and Yang—Mills field in the presence of particles that generate these fields and are singular points of them. The results that follow from the Drechsler—Rosenblum equations in the lowest orders of the approximation are reproduced. It is shown that a separation of the orders of smallness compatible with these equations leads either to the disappearance of interaction between the particles or to noncompactness of the gauge group. The possible consequences of a different separation of orders allowed by the EIH method but not compatible with the given equations are discussed.


Color Singular Point Gauge Group Lower Order Gravitational Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. P. Kosyakov,Teor. Mat. Fiz.,99, 36 (1994).Google Scholar
  2. 2.
    L. M. Chechin,Teor. Mat. Fiz.,99, 54 (1994).Google Scholar
  3. 3.
    W. Drechsler and A. Rosenblum,Phys. Lett. B,106, 81 (1981).Google Scholar
  4. 4.
    S. K. Wong,Nuovo Cimento A,65, 689 (1970).Google Scholar
  5. 5.
    A. Einstein, L. Infeld, and B. Hoffmann,Ann. Math.,39, 65 (1938).Google Scholar
  6. 6.
    A. Einstein and L. Infeld,Can. J. Math.,1, 209 (1949).Google Scholar
  7. 7.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation, Freeman, San Francisco (1973).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields, 4th ed., Pergamon Press, Oxford (1975) (the reference in the Russian original is to the edition published by Nauka, Moscow (1988)).Google Scholar
  9. 9.
    L. Infeld,Can. J. Math.,5, 17 (1953).Google Scholar
  10. 10.
    A. P. Ryabushko,Motion of Bodies in the General Theory of Relativity [in Russian], Vysheishaya Shkola, Minsk (1979).Google Scholar
  11. 11.
    A. A. Slavnov and L. D. Faddeev,Gauge Fields, Introduction to Quantum Theory (Frontiers in Physics, Vol. 50), Reading, Mass. (1980).Google Scholar
  12. 12.
    L. V. Prokhorov,Fiz. Elem. Chastits At. Yadra,25, 559 (1994).Google Scholar
  13. 13.
    M. V. Gorbatenko,Vopr. Atomn. Nauki i Tekhn., Ser. Teor. i Prikl. Fiz., No. 1, 17 (1993).Google Scholar
  14. 14.
    E. Schmutzer (ed.),Exact Solutions of Einstein's Equations [in Russian], Énergoatomizdat, Moscow (1982).Google Scholar
  15. 15.
    A. I. Alekseev and B. A. Arbuzov,Teor. Mat. Fiz.,65, 202 (1985).Google Scholar
  16. 16.
    M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, and D. B. Lichtenberg,Rev. Mod. Phys.,65, 1199 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. V. Gorbatenko
    • 1
    • 2
  1. 1.Russian Federal Nuclear CenterUSSR
  2. 2.All-Russia Research Institute of Experimental PhysicsNizhny Novgorod Province

Personalised recommendations