Advertisement

Russian Physics Journal

, Volume 39, Issue 2, pp 121–124 | Cite as

Plane-wave solution of systems of einstein-weyl equations

  • V. G. Bagrov
  • V. V. Obukhov
  • A. G. Sakhapov
Elementary Particle Physics and Field Theory
  • 18 Downloads

Abstract

This article presents an exact plane-wave solution for systems of Einstein-Dirac equations; it is of type N in the Petrov classification, and contains four arbitrary functions of the wave variable.

Keywords

Arbitrary Function Wave Variable Petrov Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Odintsov, Fortsch. Phys.,39, 621 (1991).Google Scholar
  2. 2.
    P. Wils, J. Math. Phys.,32, 23 (1991); Phys. Lett. A.,147, Nos. 8–9, 435 (1990); Phs. Scr.,41, No. 5, 645 (1990).Google Scholar
  3. 3.
    G. F. Torres del Castillo, J. Math. Phys.,27, No. 11, 2756–2758 (1986).Google Scholar
  4. 4.
    V. G. Bagrov, A. V. Shapovalov, and A. A. Yevseyevich, Class. Quant. Grav.,7, 517 (1990);8, 163 (1991).Google Scholar
  5. 5.
    V. G. Bagrov and V. V. Obukhov, J. Math. Phys.,33, No. 6, 2279 (1992).Google Scholar
  6. 6.
    V. G. Bagrov and V. V. Obukhov, TMF,97, No. 2, 250–269 (1993).Google Scholar
  7. 7.
    R. Penrose and V. Rindler, Spinors and Space—Time [Russian translation], Mir, Moscow (1987).Google Scholar
  8. 8.
    S. Chandrasekar, The Mathematical Theory of Black Holes [Russian translation], Mir, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. G. Bagrov
    • 1
  • V. V. Obukhov
    • 1
  • A. G. Sakhapov
    • 1
  1. 1.Institute for High-Energy Electronics of the Siberian Division of the Russian Academy of Sciences. Tomsk Pedagogical InstituteTomsk UniversityUSSR

Personalised recommendations