Foundations of Physics

, Volume 24, Issue 6, pp 917–948 | Cite as

Quantum phenomena and the zeropoint radiation field

  • L. de la Peña
  • A. M. Cetto
Article

Abstract

The stationary solutions for a bound electron immersed in the random zeropoint radiation field of stochastic electrodynamics are studied, under the assumption that the characteristic Fourier frequencies of these solutions are not random. Under this assumption, the response of the particle to the field is linear and does not mix frequencies, irrespectively of the form of the binding force; the fluctuations of the random field fix the scale of the response. The effective radiation field that supports the stationary states of motion is no longer the free vacuum field, but a modified form of it with new statistical properties. The theory is expressed naturally in terms of matrices (or operators), and it leads to the Heisenberg equations and the Hilbert space formalism of quantum mechanics in the radiationless approximation. The connection with the poissonian formulation of stochastic electrodynamics is also established. At the end we briefly discuss a few important aspects of quantum mechanics which the present theory helps to clarify.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e.g., H. P. Yuen,in Photons and Quantum Fluctuations, E. R. Pike and H. W. Walther, eds. (Adam Hilger, Bristol, 1988).Google Scholar
  2. 2.
    It is in connection with the Casimir forces that the reality of the zeropoint radiation field is more clearly and frequently adduced; see, e.g., T. H. Boyer,Ann. Phys. (N. Y.) 56, 474 (1970), and Ref. 3.Google Scholar
  3. 3.
    L. Spruch and E. J. Kelsey,Phys. Rev. A 18, 845 (1978); P. W. Milonni, R. J. Cook and M. E. Goggin,Phys. Rev. A 38, 1621 (1988).Google Scholar
  4. 4.
    M. Planck,Verh. Deutsch. Phys. Ges. 13, 138 (1911),Ann. Phys. (Leipzig) 37, 642 (1912);Google Scholar
  5. 4a.
    W. Nernst,Verh. Deutsch. Phys. Ges. 18, 83 (1916).Google Scholar
  6. 5.
    N. S. Kalitsin,JETP (USSR) 25, 407 (1953); E. I. Adirovich and M. I. Podgoretskii,JETP (USSR) 26, 150 (1954); P. Braffort, M. Spighel, and C. Tzara,C.R. Acad. Sci. (Paris) 239, 157. (1954) [erratum,ibid., 925 (1954)]; P. Braffort and C. Tzara,ibid.,239, 1775 (1954); T. W. Marshall,Proc. R. Soc. (London) A 276, 475 (1963).Google Scholar
  7. 6.
    M. Surdin,Ann. Inst. Henri Poincaré A 15, 203 (1971).Google Scholar
  8. 7.
    T. H. Boyer, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).Google Scholar
  9. 8.
    P. Claverie, inProceedings of the Einstein Centennial Symposium on Fundamental Physics, Bogotá, 1979, S. M. Mooreet al., eds. (Universidad de los Andes, Bogotá, 1981).Google Scholar
  10. 9.
    L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gómezet al., eds. (World Scientific, Singapore, 1983).Google Scholar
  11. 10.
    A. Rueda,Space Sci. Rev. 53, 223 (1990).Google Scholar
  12. 11.
    T. H. Boyer,Phys. Rev. D 27, 2906 (1983),29, 1096 (1984);Nuovo Cimento B 100, 685 (1987);Found. Phys. 19, 1371 (1989).Google Scholar
  13. 12.
    A. Rueda and G. Cavalleri,Nuovo Cimento C 6, 239 (1983); A. Rueda,Nuovo Cimento B 96, 64 (1986).Google Scholar
  14. 13.
    R. Payen,J. Phys. 45, 805 (1984).Google Scholar
  15. 14.
    T. W. Marshall and E. Santos,Ann. N.Y. Acad. Sci. 480, 400 (1986);Europhys. Lett. 3, 293 (1987);Found. Phys. 18, 185 (1988),Phys. Rev. A 39, 6271 (1989); inProblems in Quantum Physics, Gdansk'87, L. Kostro, A. Posiewik, J. Pykacz, and M. Zubowski, eds. (World Scientific, Singapore, 1988).Google Scholar
  16. 15.
    D. C. Cole,Phys. Rev. D 33, 2903 (1986);Phys. Rev. A 42, 1847 (1990);Found. Phys. 20, 225 (1990).Google Scholar
  17. 16.
    H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).Google Scholar
  18. 17.
    A. V. Barranco, S. A. Brunini, and H. M. FranÇa,Phys. Rev. A 39, 5492 (1989).Google Scholar
  19. 18.
    H. E. Puthoff,Phys. Rev. D 35, 3266 (1987);Phys. Rev. A 39, 2333 (1989),40, 4857 (1989). See comments by P. S. Wesson and E. Santos and replay by H. E. Puthoff inPhys. Rev. A 44, 3379, 3382, 3383, 3385 (1991).Google Scholar
  20. 19.
    A. M. Cetto and L. de la Peña,Phys. Rev. A 37, 1952, 1960 (1988). See also H. M. FranÇa, T. W. Marshall, and E. Santos,Phys. Rev. A 45, 6436 (1992).Google Scholar
  21. 20.
    A. M. Cetto and L. de la Peña,Found. Phys. 19, 419 (1989).Google Scholar
  22. 21.
    D. C. Cole, inFormal Aspects in Electromagnetic Theory, A. Lakhtakia, ed. (World Scientific, Singapore, 1992); “Reinvestigation of the Thermodynamics of Blackbody Radiation via Classical Physics, preprint, 1991.Google Scholar
  23. 22.
    R. Blanco, H. M. FranÇa, and E. Santos,Phys. Rev. A 43, 693 (1991).Google Scholar
  24. 23.
    See, e.g., C. P. Enz inPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974).Google Scholar
  25. 24.
    A review of the attempts to remove the gravitational difficulties associated to the zeropoint radiation field can be found in S. Weinberg,Rev. Mod. Phys. 61, 1 (1989).Google Scholar
  26. 25.
    T. H. Boyer,Phys. Rev. D 13, 2832 (1976);Phys. Rev. A 18, 1228 (1978); T. W. Marshall and P. Claverie,J. Math. Phys. 21, 1819 (1980); P. Claverie, L. Pesquera, and F. Soto,Phys. Lett. A 80, 113 (1980); P. Claverie and F. Soto,J. Math. Phys. 23, 753 (1982); L. Pesquera, thesis, Université de Paris VI, 1980 (unpublished).Google Scholar
  27. 26.
    L. de la Peña and A. M. Cetto,Nuovo Cimento B 92, 189 (1986). See alsoRev. Mex. Fís.37, 17 (1991).Google Scholar
  28. 27.
    L. de la Peña and A. M. Cetto, “Reformulation of stochastic electrodynamics for an explanation of quantum phenomena,” preprint, IFUNAM, 1989.Google Scholar
  29. 28.
    A. M. Cetto and L. de la Peña,Found. Phys. Lett. 4, 73 (1991).Google Scholar
  30. 29.
    L. de la Peña and A. M. Cetto, inNonlinear Fields: Classical, Random, Semisclassical, P. Garbaczewski and Z. Popowicz, eds. (World Scientific, Singapore, 1991), p. 416 and 436.Google Scholar
  31. 30.
    L. de la Peña and A. M. Cetto, “Quantum phenomena and the zeropoint radiation field. II,” preprint, February 1993.Google Scholar
  32. 31.
    See the paper by Planck in Ref. 4; also: M. von Laue,Ann. Phys. (Leipzig) 47, 853 (1915);Google Scholar
  33. 31a.
    M. Planck,The Theory of Heat Radiation (Dover, New York, 1959).Google Scholar
  34. 32.
    G. H. Goedecke,Found. Phys. 13, 1101 (1983).Google Scholar
  35. 33.
    See, e.g., A. Papoulis,Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965).Google Scholar
  36. 34.
    M. Born, W. Heisenberg, and P. Jordan,Z. Phys. 35, 557 (1926); reprinted inSources of Quantum Mechanics, B. van der Waerden, ed. (Dover, New York, 1968).Google Scholar
  37. 35.
    See, e.g., L. de la Peña,Phys. Lett. A 81, 441 (1981); “Stochastic Electrodynamics for Particles with Structure,” preprint, IFUNAM 81-18, 1981; A. Rueda, inProceedings 2nd Workshop on Fundamental Physics, University of Puerto Rico, Humacao, P.R., 1986;Found. Phys. Lett. 6, 75 (1993); T. W. Marshall and E. Santos, the last paper in Ref. 14; A. M. Cetto and L. de la Peña, inProceedings of the Oviedo Symposium on Fundamental Problems in Quantum Physics, 1993, to be published.Google Scholar
  38. 36.
    The idea of the universality of the background noise has been propounded on several occasions; see, e.g., E. Santos, inGIFT Seminar on Quantum Field Theory, Jaca (Spain) 1975, and references therein. The concept of quantum mechanics as a limit theory of SED (for e→0) is used, e.g., by E. Santos inNuovo Cimento B 19, 57 (1974) and T. H. Boyer inPhys. Rev. D 11, 809 (1975).Google Scholar
  39. 37.
    See, e.g., N. G. van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam) and H. Risken,The Fokker-Planck Equation (Springer, New York).Google Scholar
  40. 38.
    P. K. Feyerabend,Z. Phys. 145, 421 (1956).Google Scholar
  41. 39.
    T. A. Brody,Rev. Mex. Fis. 35, S80 (1989).Google Scholar
  42. 40.
    See, e.g., L. Pesquera and P. Claverie,J. Math. Phys. 23, 1315 (1982).Google Scholar
  43. 41.
    This was apparently first proposed by E. Fermi inRend. Lincei 5, 595 (1927). In more recent times it has been retaken by other authors; see, e.g., D. H. Sharp, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).Google Scholar
  44. 42.
    P. W. Milonni,Phys. Rep. 25, 1 (1976) and references therein. See also P. W. Milonni, inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980) andPhys. Scr. T 21, 102 (1988).Google Scholar
  45. 43.
    An early derivation of theA coefficient for the SED harmonic oscillator can be found in T. W. Marshall,Izv. Vuzov (Fiz.) 11, 34 (1968); more recent results can be seen in L. de la Peña and A. M. Cetto,J. Math. Phys. 20, 469 (1979); H. M. FranÇa and T. W. Marshall,Phys. Rev. A 38, 3258 (1988).Google Scholar
  46. 44.
    A. A. Sokolov and V. S. Tumanov,Zh. Eksp. Teor. Fiz. 30, 802 (1956) [Soviet Phys. JETP 3, 958 (1957)]; R. Schiller and H. Tesser,Phys. Rev. A 3, 2035 (1971); P. W. Milonni,Phys. Lett. A 82, 225 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • L. de la Peña
    • 1
  • A. M. Cetto
    • 1
  1. 1.Instituto de FisicaUniversidad Nacional Autónoma de MéxicoMéxico, D.F.

Personalised recommendations