World Journal of Surgery

, Volume 16, Issue 1, pp 2–9 | Cite as

Pathogenesis of edema formation in burn injuries

  • Tjøstolv Lund
  • Henning Onarheim
  • Rolf K. Reed
World Progress In Surgery

Abstract

One of the obvious acute features of cutaneous thermal injury is the swelling of the involved tissue. This swelling is caused by a fluid shift from circulating plasma. Along with the evolution of intravenous fluid therapy in trauma and surgery, the implementation of such therapy to burn victims has improved survival. Edema generation aggravated by fluid therapy may, however, represent a source of increased morbidity. This paper presents a review of the literature on postburn edema generation, focusing mainly on fluid physiology. It is well documented that fluid is lost from the circulation into burned tissue because of a moderate increase in capillary permeability to fluid and macromolecules and a modest increase in hydrostatic pressure inside the perfusing microvessels. Recently it was discovered that a very negative interstitial pressure develops in thermally injured skin. This pressure constitutes a strong “suction” adding markedly to the edema generating effect of increased capillary permeability and pressure.

Résumé

Un des problèmes majeurs dés brûlures cutanées est l'oedème tissulaire. Cet oedème est dû à un déplacement des liquides à partir du plasma circulant. L'utilisation des techniques de remplissage intraveineux, courante dans les traumatismes et au cours de la chirurgie, a contribué à améliorer le pronostic des brûlures graves. La majoration des oedèmes par cette thérapeutique peut entrainer une morbidité supplémentaire. Dans cet article, est présentée une revue de la littérature sur la génèse des oedèmes post-brûlures, insistant surtout sur les aspects physiologiques des déplacements liquidiens. La fuite de liquides de la circulation générale vers les tissus brûlés est bien connue. Elle est secondaire à une perméabilitè capillaire accure pour les liquides et les macromolécules ainsi qu'à une augmentation de la pression hydrostatique à l'intérieur des microvaisseaux de la peau. Récemment, il a été mis en évidence une chute importante de la pression interstitielle dans la peau brûlée. Cette chute de pression crée un effet “pompe” qui majore l'oedème déjà favorisé par les facteurs précités.

Resumen

Una de las características obvias de las lesiones térmicas cutáneas agudas es el edema del tejido afectado. El edema es causado por migración de líquido a partir del plasma circulante, Coincidente con la evolución y avances de la terapia con líquidos intravenosos en el trauma y la cirugía, se ha implementado tal modalidad terapéutica en víctimas de quemaduras con mejoría de la tasa de sobrevida. La formación del edema, agravado por la terapia con líquidos parenterales, puede significar una fuente de mayor morbilidad.

El presente artículo es una revisión de la literatura sobre formación del edema de las quemaduras, enfocado principalmente desde el aspecto de la fisiología de los líquidos. Está bien documentado el que los líquidos escapan de la circulación hacia los tejidos quemados debido a moderado aumento de la permeabilidad capilar para los líquidos y macromoléculas y de un modesto incremento de la presión hidrostática en la microvasculatura. Recientemente se ha descubierto que se desarrolla presión intersticial muy negativa en la piel que ha sufrido lesión térmica. Esta presión constituye una especie de mecanismo de “succión”, el cual contribuye en forma notoria al efector generador de edema por las aumentadas permeabilidad capilar y presión hidrostática.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Remensnyder, T.P.: Topography of tissue oxygen changes in acute burn edema. Arch. Surg.105:477, 1972PubMedGoogle Scholar
  2. 2.
    Wiig, H., Reed, R.K.: Compliance of the interstitial space in rats. II. Studies on skin. Acta Physiol. Scand.113:307, 1981PubMedGoogle Scholar
  3. 3.
    Arturson, G.: Pathophysiological aspects of the burn syndrome. Acta Chir. Scand. (Suppl.)274:1, 1961PubMedGoogle Scholar
  4. 4.
    Arturson, G., Mellander, S.: Acute changes in capillary filtration and diffusion in experimental burn injury. Acta Physiol. Scand.62:457, 1964PubMedGoogle Scholar
  5. 5.
    Arturson, G., Soeda, S.: Changes in transcapillary leakage during healing of experimental burns. Acta Chir. Scand.133:609, 1967PubMedGoogle Scholar
  6. 6.
    Arturson, G., Jakobsson, O.P.: Oedema measurements in a standard burn model. Burns12:1, 1985Google Scholar
  7. 7.
    Fox, C.L., Lasker, S.E.: Fluid and electrolyte alterations in burned monkeys. Ann. N.Y. Acad. Sci.150:611, 1968PubMedGoogle Scholar
  8. 8.
    Leape, L.L.: Early burn wound changes. J. Pediatr. Surg.3:292, 1968PubMedGoogle Scholar
  9. 9.
    Leape, L.L.: Initial changes in burns: Tissue changes in burned and unburned skin of Rhesus monkeys. J. Trauma10:488, 1970PubMedGoogle Scholar
  10. 10.
    Demling, R.H., Mazess, R.B., Witt, R.M., Wolberg, W.H.: The study of burn wound edema using dicromatic absorptiometry. J. Trauma18:124, 1978PubMedGoogle Scholar
  11. 11.
    Carvajal, H.F., Brouhard, B.H., Linares, H.A.: Effect of antihistamin-antiseretonin and ganglionic blocking agents upon increased capillary permeability following burn trauma. J. Trauma15:969, 1975PubMedGoogle Scholar
  12. 12.
    Carvajal, H.F., Linares, H.A., Brouhard, B.H.: Relationship of burn size to vascular permeability changes in rats. Surg. Gynecol. Obstet.149:193, 1979PubMedGoogle Scholar
  13. 13.
    Carvajal, H.F., Linares, H.A.: Effect of burn depth upon oedema formation and albumin extravasation in rats. Burns7:79, 1980Google Scholar
  14. 14.
    Brouhard, B.H., Carvajal, H.F., Linares, H.A.: Burn edema and protein leakage in the rat. I. Relationship to time of injury. Microvasc. Res.15:221, 1978PubMedGoogle Scholar
  15. 15.
    Brown, W.L., Bowler, E.G., Mason, A.D. Jr., Pruitt, B.A. Jr.: Protein metabolism in burned rats. Am. J. Physiol.231:476, 1976PubMedGoogle Scholar
  16. 16.
    Brown, W.L., Bowler, E.G., Mason, A.D. Jr.: The studies of metabolism and nutritional effects in burn injury in soldiers: Studies of disturbance of protein turnover in burned troops: Use of an animal model. U.S. Army Institute of Surgical Research, Fort Sam Houston, Annual Report 1981, pp. 233–259Google Scholar
  17. 17.
    Sokawa, M., Monafo, W., Deitz, F., Flynn, D.: The relationship between experimental fluid therapy and wound edema in scald wounds. Ann. Surg.193:237, 1981PubMedGoogle Scholar
  18. 18.
    Lund, T., Reed, R.K.: Microvascular fluid exchange following thermal skin injury in the rat: Changes in extravascular colloid osmotic pressure, albumin mass, and water content. Circ. Shock20:91, (1986)PubMedGoogle Scholar
  19. 19.
    Onarheim, H., Lund, T., Reed, R.K.: Thermal skin injury: II. Effects on edema formation and albumin extravasation of fluid resuscitation with lactated Ringer's, plasma, and hypertonic saline (2,400 mosmol/l). Circ. Shock27:25, 1989PubMedGoogle Scholar
  20. 20.
    Cope, O., Moore, F.D.: The redistribution of body water and the fluid therapy of the burned patient. Ann. Surg.126:1010, 1947Google Scholar
  21. 21.
    Evans, E.I., Purnell, O.J., Robinett, P.W., Batchelor, A., Martin, M.: Fluid and electrolyte requirements in severe burns. Ann. Surg.135:804, 1952PubMedGoogle Scholar
  22. 22.
    Dobson, E.L., Warner, G.F.: Factors concerned in the early stages of thermal shock. Circ. Res.5:69, 1957PubMedGoogle Scholar
  23. 23.
    Ferguson, J.L., Hikawyj-Yevich, I., Miller, H.I.: Body fluid compartment changes during burn shock in the guinea pig. Circ. Shock7:457, 1980PubMedGoogle Scholar
  24. 24.
    Zetterström, H., Arturson, G.: Plasma oncotic pressure and plasma protein concentration in patients following burn injury. Acta Anaesthesiol. Scand.24:288, 1980PubMedGoogle Scholar
  25. 25.
    Farrow, S.P., Lawrence, J.C.: Thermal injury and the sodium, potassium and water exchange of skin. Br. J. Exp. Pathol.58:327, 1977PubMedGoogle Scholar
  26. 26.
    Arturson, G.: Microvascular permeability to macromolecules in thermal injury. Acta Physiol. Scand. (Suppl.)463:111, 1979Google Scholar
  27. 27.
    Harms, B.A., Bodai, B.I., Kramer, G.C., Demling, R.H.: Microvascular fluid and protein flux in pulmonary and systemic circulations after thermal injury. Microvasc. Res.23:77, 1982PubMedGoogle Scholar
  28. 28.
    Demling, R.H., Kramer, G.C., Harms, B.A.: Role of thermal injury induced hypoproteinemia on fluid flux and protein permeability in burned and non-burned tissue. Surgery95:136, 1984PubMedGoogle Scholar
  29. 29.
    Ferguson, J.L., Merrill, G.F., Miller, H.I., Spitzer, J.J.: Regional blood flow redistribution during early burn shock in the guinea pig. Circ. Shock4:317, 1977PubMedGoogle Scholar
  30. 30.
    Jelenko, C., Jennings, W.D., O'Kelley, W.R., Byrd, H.C.: Threshold burning effects on distant microcirculation. Arch. Surg.106:317, 1973PubMedGoogle Scholar
  31. 31.
    Kiviluoto, T., Grönbech, J.-E., Kivilaakso, E., Lund, T., Pitkänen, J., Svanes, K.: Acute gastric mucosal lesions and hemodynamic and microcirculatory changes in the thermally injured rat. Burns15:365, 1989PubMedGoogle Scholar
  32. 32.
    Leape, L.L.: Kinetics of burn edema formation in primates. Ann. Surg.176:223, 1972PubMedGoogle Scholar
  33. 33.
    Wachtel, T.L., Frank, H.A., Sanders, R., Hargens, A.R., Peters, R.M.: Definition of the Starling forces with wick catheter in burned patients. J. Burn Care Rehabil.4:331, 1983Google Scholar
  34. 34.
    Zawacki, B.E.: The natural history of reversible burn injury. Surg. Gynecol. Obstet.139:867, 1974PubMedGoogle Scholar
  35. 35.
    Cotran, R.S.: The delayed and prolonged vascular leakage in inflammation. II. An electron microscopic study of the vascular response after thermal injury. Am. J. Pathol.46:589, 1965PubMedGoogle Scholar
  36. 36.
    Pitkänen, J., Lund, T., Aanderud, L., Reed, R.K.: Transcapillary colloid osmotic pressures in injured and non-injured skin of seriously burned patients. Burns13:198, 1987Google Scholar
  37. 37.
    Lund, T., Bert, J.L., Onarheim, H., Bowen, B.D., Reed, R.K.: Microvascular exchange during burn injury. I: A review. Circ. Shock28:179, 1989PubMedGoogle Scholar
  38. 38.
    Pitt, R.M., Parker, J.C., Jurkovich, G.J., Taylor, A.E., Curreri, P.W.: Analysis of altered capillary pressure and permeability after thermal injury. J. Surg. Res.42:693, 1987PubMedGoogle Scholar
  39. 39.
    Demling, R.H.: Fluid replacement in burned patients. Surg. Clin. North Am.67:15, 1987PubMedGoogle Scholar
  40. 40.
    Aukland, K., Nicolaysen, G.: Interstitial fluid volume: Local regulatory mechanisms. Physiol. Rev.61:556, 1981PubMedGoogle Scholar
  41. 41.
    Lund, T., Wiig, H., Reed, R.K.: Acute postburn edema: Role of strongly negative interstitial fluid pressure. Am. J. Physiol.255 (Heart Circ. Physiol. 24):H1069, 1988Google Scholar
  42. 42.
    Onarheim, H., Reed, R.K.: Thermal skin injury: Effect of fluid therapy on the transcapillary colloid osmotic gradient. J. Surg. Res.50:272, 1991PubMedGoogle Scholar
  43. 43.
    Lund, T., Onarheim, H., Wiig, H., Reed, R.K.: Mechanisms behind the increased dermal imbibition pressure in acute burn edema. Am. J. Physiol.256 (Heart Circ. Physiol. 25):H1940, 1989Google Scholar
  44. 44.
    Demling, R.H.: Burns. In Edema, N.C. Staub, A.E. Taylor, editors, New York, Raven Press, 1984, pp. 579–599Google Scholar
  45. 45.
    Pruitt, B.A. Jr., Mason, A.D. Jr., Moncrief, J.A.: Hemodynamic changes in the early postburn patient: The influence of fluid administration and of a vasodilator (hydralazine). J. Trauma11:36, 1971PubMedGoogle Scholar
  46. 46.
    Lund, T., Reed, R.K.: Acute hemodynamic effects of thermal skin injury in the rat. Circ. Shock20:105, 1986PubMedGoogle Scholar
  47. 47.
    Onarheim, H., Lund, T., Reed, R.K.: Thermal skin injury: I. Acute hemodynamic effects of fluid resuscitation with lactated Ringer's, plasma, and hypertonic saline (2,400 mosmol/l) in the rat. Circ. Shock27:13, 1989PubMedGoogle Scholar
  48. 48.
    Cioffi, W.G., DeMeules, J.E., Gamelli, R.L.: The effect of burn injury and fluid resuscitation on cardiac function in vitro. J. Trauma26:638, 1986PubMedGoogle Scholar
  49. 49.
    Moore, D.B., Rainey, W.C., Caldwell, F.T. Jr., Bowser-Wallace, B.H., Graves, D.B., Shewmake, K.B., Hough, A.J.: The effect of rapid resuscitation upon cardiac index following thermal trauma in a porcine model. J. Trauma27:141, 1987PubMedGoogle Scholar
  50. 50.
    Demling, R.H., Niehaus, G., Perea, A., Will, J.A.: Effect of burn-induced hypoproteinemia on pulmonary transvascular fluid filtration rate. Surgery85:339, 1979PubMedGoogle Scholar
  51. 51.
    Demling, R.H., Wong, C., Jin, L., Hechtman, H., LaLonde, C., West, K.: Early lung dysfunction after major burns: Role of edema and vasoactive mediators. J. Trauma25:959, 1985PubMedGoogle Scholar
  52. 52.
    Taylor, A.E., Granger, D.N.: Exchange of macromolecules across the microcirculation. In Handbook of Physiology: The cardiovascular system. Vol. IV: Microcirculation Part 1, E.M. Renkin, C.C. Michel, editors, Bethesda, The American Physiological Society, 1984, pp. 467–520Google Scholar
  53. 53.
    Demling, R.H., Will, J.A., Belzer, F.O.: Effect of major thermal injury on the pulmonary microcirculation. Surgery83:746, 1978PubMedGoogle Scholar
  54. 54.
    Kramer, G.C., Gunther, R.A., Nerlich, M.L., Zweifach, S.S., Demling, R.H.: Effect of dextran-70 on increased microvascular fluid and protein flux after thermal injury. Circ. Shock9:529, 1982PubMedGoogle Scholar
  55. 55.
    Brouhard, B.H., Carvajal, H.F., Miller, T.H.: Effect of nicotinic acid on vascular permeability after thermal trauma in the rat. J. Trauma18:774, 1978PubMedGoogle Scholar
  56. 56.
    LaLonde, C., Demling, R.H., Knox, J., Youn, Y.K., Zhu, D.: Deferoxamine conjugated to hespan, as a resuscitation fluid, attenuates the systemic response to burn injury. Physiologist33:A93, 1990Google Scholar
  57. 57.
    Schmalzel, J.L., Chu, C.-S., McManus, A.T.: Constant-current and constant-voltage stimulators for wound healing studies. In Proceedings of the Eighth Annual Conference of the IEEE/Engineering in Medicine and Biology Society, Fort Worth, Texas, 1986, pp. 1482–1484Google Scholar
  58. 58.
    Chu, C.-S., McManus, A.T., Mason, A.D., Jr., Okerberg, C.V., Pruitt, B.A., Jr.: Multiple graft harvestings from deep partial-thickness scald wounds healed under the influence of weak direct current. J. Trauma30:1044, 1990PubMedGoogle Scholar
  59. 59.
    Wilmore, D.W., Aulick, L.H., Mason, A.D., Jr., Pruitt, B.A., Jr.: The influences of the burn wound on local and systemic response to injury. Ann. Surg.186:444, 1977PubMedGoogle Scholar
  60. 60.
    Crum, R.L., Dominic, W., Hansbrough, J.F., Shackford, S.R., Brown, M.R.: Cardiovascular and neurohumoral responses following burn injury. Arch. Surg.125:1065, 1990PubMedGoogle Scholar
  61. 61.
    Neurohumoral responses to thermal injury: Editorial. Lancet2:1221, 1990Google Scholar
  62. 62.
    LaCelle, P.T., Blumenstock, F.A., Saba, T.M.: Interaction of plasma fibronectin and circulating collagenous tissue debris after burn. FASEB J.4:A849, 1990Google Scholar
  63. 63.
    Onarheim, H., Missavage, A.E., Gunther, R.A., Kramer, G.C., Reed, R.K., Laurent, T.C.: Marked increase of plasma hyaluronan concentration after major thermal injury and infusion therapy. J. Surg. Res.50:259, 1991PubMedGoogle Scholar
  64. 64.
    Ferrara, J.J., Reed, R.K., Dyess, D.L., Townsley, M.I., Onarheim, H., Laurent, T.C., Taylor, A.E.: Increased hyaluronan flux from skin following burn injury. J. Surg. Res.50:240, 1991PubMedGoogle Scholar
  65. 65.
    Reed, R.K., Laurent, T.C., Taylor, A.E.: Hyaluronan in prenodal lymph from skin: Changes with lymph flow. Am. J. Physiol.259 (Heart Circ. Physiol. 28):H1097, 1990Google Scholar
  66. 66.
    Paty, P.B., Graeff, R.W., Waldman, F.M., Hunt, T.K., Mathes, S.J.: Biologic priming of neutrophils in subcutaneous wounds. Arch. Surg.123:1509, 1988PubMedGoogle Scholar
  67. 67.
    Deitch, E.A., Lu, Q., Xu, D.-Z., Specian, R.D.: Effect of local and systemic burn microenvironment on neutrophil activation as assessed by complement receptor expression and morphology. J. Trauma30:259, 1990PubMedGoogle Scholar
  68. 68.
    Vindenes, H., Bjerknes, R.: Phagocyte dysfunctions following burn injury. Anal. Cell. Path.1:305, 1989Google Scholar
  69. 69.
    Pruitt, B.A. Jr.: Advances in fluid therapy and the early care of the burn patient. World J. Surg.2:139, 1978PubMedGoogle Scholar
  70. 70.
    Arturson, G., Groth, T., Hedlund, A., Zaar, B.: Potential use of computer simulation in treatment of burns with special regard to oedema formation. Scand. J. Plast. Reconstr. Surg.18:39, 1984PubMedGoogle Scholar
  71. 71.
    Bush, J.W., Schneider, A.M., Wachtel, T.L., Brimm, J.E.: A simulation analysis of plasma water dynamics and treatment in acute burn resuscitation. J. Burn Care Rehabil.7:86, 1986PubMedGoogle Scholar
  72. 72.
    Bert, J.L., Bowen, B.D., Gu, X., Lund, T., Reed, R.K.: Microvascular exchange during burn injury: II. Formulation and validation of a mathematical model. Circ. Shock28:199, 1989PubMedGoogle Scholar
  73. 73.
    Bowen, B.D., Bert, J.L., Gu, X., Lund, T., Reed, R.K.: Microvascular exchange during burn injury: III. Implications of the model. Circ. Shock28:221, 1989PubMedGoogle Scholar

Copyright information

© Société Internationale de Chirurgie 1992

Authors and Affiliations

  • Tjøstolv Lund
    • 1
  • Henning Onarheim
    • 1
  • Rolf K. Reed
    • 1
  1. 1.Department of Anesthesiology, Department of Physiology, and Burn CenterUniversity of BergenBergenNorway

Personalised recommendations