, Volume 9, Issue 2–3, pp 157–167 | Cite as

Fungal physiology and the formation of calcium oxalate films on stone monuments

  • Daniela Pinna
Historical Biographies


Extensive, uniform, yellow-brown films are observed on many monuments. The origin of these films, composed predominantly of calcium oxalate, has been investigated by several authors. Oxalate film formation may be related, in some cases, to the activity of such microorganisms as fungi, which presumably form oxalic acid via the metabolic transformation of organic substances already present on the stone. The present work provides an overview of the physiological factors affecting oxalate synthesis by fungi and of oxalic acid in fungi metabolism.

Key words

stone monuments Ca-oxalate films oxalic acid fungi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alessandrini G., Bonecchi R., Peruzzi R., Toniolo L., (1989) —Caratteristiche composizionali e morfologiche di pellicole ad ossalato: studio comparato su substrati lapidei di diversa natura. Proceedings of the Symposium «Le pellicole and ossalati: origine e significato nella conservazione delle opere d'arte», Milano, 137–150.Google Scholar
  2. Alessandrini G., Bugini R., Peruzzi R., (1986) —I trattamenti superficiali effettuati nel passato. La Certosa di Pavia: passato e presente nella facciata della chiesa, CNR, Roma, 291–319.Google Scholar
  3. Arnott H.J., Webb M.A., (1983) —The structure and formation of calcium oxalate crystal deposits on the hypae of a wood rot fungus. Scanning Electron Microsc.,41747–1758.Google Scholar
  4. Arnott H.J., Fryar A., (1984) —Raphide-like fungal crystals from Arlington, Texas (U.S.A.) compost. Scanning Electron Microsc.,41745–1750.Google Scholar
  5. Arnott J.J., (1982) —Calcium oxalate (weddellite) crystals in forest litter. Scanning Electron Microsc.,31141–1150.Google Scholar
  6. Bennett A.R., Hindal D.F., (1989) —Mycelial growth and oxalate production by five strains of. Mycologia,81 (4554–560.Google Scholar
  7. Bennett A.R., Hindal D.F., (1990) —Mycelium formation and calcium oxalate production by dsRNA-free virulent and dsRNA-containing hypovirulent strains of. Mycologia,82 (3358–363.Google Scholar
  8. Benny G.L., Khan S.R., (1988) —The Radiomycetaceae (Mucorales; Zygomycetes). Calcium oxalate crystals on the sporangiolar wall and aerial hyphae. Scanning Microscopy,21199–1206.Google Scholar
  9. Callahan F.E., Rowe D.E., (1991) —Use of a host-pathogen interaction system to test whether oxalic acid is the sole pathogenic determinant in the exudate of. Phytopathology,811546–1550.Google Scholar
  10. Ceruti A., Marra D., Fusconi A., Berta G., (1983–84) —Sulla struttura microscopica e submicroscopica di specie di «Inocybe». Allionia,2639–48.Google Scholar
  11. Chiari G., Sampò S., Torraca G., (1989) —Formazione di ossalati di calcio su superfici marmoree da parte di funghi. Proceedings of the Symposium «Le pellicole ad ossalati: origine e significato nella conservazione delle opere d'arte», Milano, 85–90.Google Scholar
  12. Ciccarone C, Pinna D., (1993) —Calcium oxalate films on stone monuments-Microbiological investigations. Aerobiologia,933–37.Google Scholar
  13. Cromack K., Sollins P., Graustein W.C., Speidel K., Todd A.W., Spycher G., Li C.Y., Tood R.L., (1979) —Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus. Soil Biol. Biochem.,11 (5463–468.Google Scholar
  14. Del Monte M., (1991) —Trajan's Column: Lichens don't live here anymore. Endeavour, New Series, vol. 15, n. 2, 86–93.Google Scholar
  15. Del Monte M., Ferrari A., (1989) —Patine da biointerazione alla luce delle superfici marmoree. Proceedings of the Symposium «Le pellicole ad ossalati: origine e significato nella conservazione delle opere d'arte», Milano, 171–182.Google Scholar
  16. Doubrava N.S., Dean R.A., Kuc J., (1988) —Induction of systemic resistance to anthracnose caused by. Physiological and Molecular Plant Pathology,3369–79.Google Scholar
  17. Duchesne L.C., Ellis B.E., Peterson R.L., (1989) —Diseases suppression by the ectomycorrhizal fungus. Can. J. Bot.,672726–2730.Google Scholar
  18. Espejo E, Agosin E., (1991) —Production and degradation of oxalic acid by brown rot fungi. Applied and Environmental Microbiology,57 (71980–1986.Google Scholar
  19. Franceschi V.R., Horner H.T., (1980) —Calcium oxalate crystals in plants. Botanica Review,46361–427.Google Scholar
  20. Garibova L.V., Kozlava R.G., Losyakova L.S., Safonova N.V., (1982) —Oxalic acid formation during growing of seed mycelium of the edible mushrooms Pleurotus ostreatuson loose nutritive substrates. Biol. Nauki. (Mosc.),0 (379–84.Google Scholar
  21. Godoy G., Steadman J.R., Dickman M.B., Dam R., (1990) —Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Phaseolus vulgaris. Physiological and Molecular Plant Pathology,37179–191.Google Scholar
  22. Guidobaldi F., Laurenzi Tabasso M., Meucci C., (1984) —Monumenti in marmo di epoca imperiale a Roma: indagine sui residui di trattamenti superficiali. Bollettino d'Arte,24121–134.Google Scholar
  23. Havir E.A., (1983) —Oxalate production by virulent but not by hypovirulent strains of. Physiological Plant Pathology,23369–376.Google Scholar
  24. Havir E.A., Anagnostakis S.L., (1985) —Oxaloacetate acetylhydrolase activity in virulent and hypovirulent strains of. Physiological Plant Pathology,261–9.Google Scholar
  25. Hillman B.I., Shapira R., Nuss D.L., (1990) —Hypovirulence-associated suppression of host functions in. Phytopathology,80950–956.Google Scholar
  26. Horner H.T., Tiffany L.H., Cody A.M., (1983) —Formation of calcium oxalate crystals associated with apothecia of the discomycete. Mycologia,75 (3423–435.Google Scholar
  27. Horner H.T., Tiffany L.H., Cody A.M., (1985) —Calcium oxalate bipyramidal crystals on the Basidiocarps of. Proc. Iowa Acad. Sci.,92 (270–77.Google Scholar
  28. Horner H.T., Tiffany L.H., Knaphus G., (1991) —Crystal forms associated with rhizomorphs on oakleaf litter. Am. J. Bot.,78 (6 suppl.):26.Google Scholar
  29. Ikotun T., (1984) —Production of oxalic acid by. Mycopathologia,889–14.Google Scholar
  30. Jurinak J.J., Dudley L.M., Allen M.F., Knight W.G., (1986) —The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: A thermodynamic study. Soil. Sci.,142 (5255–261.Google Scholar
  31. Kanatchinova M.K., Kasymbekov B.K., (1986) —Decomposing activity of microscopic fungi and its causative factors. Mikol. Fitopatol.,20 (147–52.Google Scholar
  32. Kanatchinova M.K., Zemlyakov S.V., (1987) —Production of oxalic acid by microscopic fungi, desctructors of rocks. Mikrobiol. Zh. (Kiev),4955–61.Google Scholar
  33. Kazmierczak J., Ittekkot V., Degens E.T., (1985) —Biocalcification through time: environmental challenge and cellular response. Paleont. Z.,5215–23.Google Scholar
  34. Keller J., (1985) —Les cystides cristalliferes des Aphyllophorales. Mycologia Helvetica,5277–341.Google Scholar
  35. Krisai I., Mrazek E., (1986) —Calcium oxalate crystals in. Pl. Syst. Evol.,154325–341.Google Scholar
  36. Kubicek C.P., Schreferl-Kunar G., Wohrer W., Rohr M., (1988) —Evidence for a cytoplasmic pathway of oxalate biosynthesis in. Applied and Environmental Microbiology,54 (3633–637.Google Scholar
  37. Kurian P., Stelzig D.A., (1979a) —Growth of and oxalic acid production by Cristulariella pyramidalison selected culture media. Phytopathology.69 (7712–714.Google Scholar
  38. Kurian P., Stelzig D.A., (1979b) —The synergistic role of oxalic acid and endopolygalacturonase in bean leaves infected by Cristulariella pyramidalis. Phytopathology,69 (121301–1304.Google Scholar
  39. Lazzarini L., Salvadori O., (1989) —A reassessment of the patina called «scialbatura». Studies in Conservation,3420–26.Google Scholar
  40. Lapeyrie F., (1988) —Oxalate synthesis from soil bicarbonate by the mycorrhizal fungus Paxillus involutus. Plant and Soil,1103–8.Google Scholar
  41. Lapeyrie F., Chilvers G.A., Bhem C.A., (1987) —Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus(Batsch. ex Fr.) Fr. New Phytol.,106139–146.Google Scholar
  42. Marciano P., Di Lenna P., Magro P., (1983) —Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorumisolates on sunflower. Physiological Plant Pathology,22339–345.Google Scholar
  43. Matteini M., Moles A., (1986) —Le patine di ossalato sui manufatti in marmo. O.P.D. Restauro (Num. spec.), Restauro del marmo/Opere e problemi:65–73.Google Scholar
  44. Maxwell D.P., Bateman D.F., (1986) —Oxalic acid biosynthesis by Sclerotium rolfsii. Phytopathology,581635–1642.Google Scholar
  45. Mucharromah E., Kuc J., (1991) —Oxalate and phosphates induce systemic resistance against diseases caused by fungi, bacteria and viruses in cucumber. Crop Protection,10265–270.Google Scholar
  46. Mueller H.M., (1986) —Utilization of gluconate by Aspergillus niger:II. Enzymes of degradation pathways and main end products. Zentralbl. Microbiol.,141 (6461–469.Google Scholar
  47. Orlowska B., Golab Z., Starosta J., (1986) —The participation of fungi in leaching metals from their oxides. Acta Mycol.,18281–288.Google Scholar
  48. Powell, M.D., Arnott H.J., (1985) —Calcium oxalate crystal production in 2 members of the Mucorales. Scanning Electron Microsc.,1183–190.Google Scholar
  49. Punja Z.K., Huang J.S., Jenkins S.F., (1985) —Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence in Sclerotium rolfsii. Can. J. Plant Pathol.,7 (2109–117.Google Scholar
  50. Punja Z.K., Jenkins S.F., (1984a) —Light and scanning electron microscopic observations of calcium oxalate crystals produced during growth of Sclerotium rolfsiiin culture and in infected tissue. Can. J. Bot.,622028–2032.Google Scholar
  51. Punja Z.K., Jenkins S.F., (1984b) —Influence of medium composition on mycelial growth and oxalic acid production in Sclerotium rolfsii. Mycologia,76 (5947–950.Google Scholar
  52. Rao D.V., Tewari J.P., (1987) —Production of oxalic acid by Mycena citricolor,causal agent of the American leaf spot of coffee. Phytopathology,77780–785.Google Scholar
  53. Rao D.V., Tewari J.P., (1989) —Occurrence of magnesium oxalate crystals on lesions incited by Mycena citricoloron coffee. Phytopathology,79783–787.Google Scholar
  54. Raven J.A., Smith F.A., (1976) —Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol.,76415–431.Google Scholar
  55. Rossi-Manaresi R., Grillini G.C., Pinna D., Tucci A., (1986) —La formazione di ossalati di calcio su superfici monumentali: genesi biologica o da trattament? Proceedings of the Symposium «Le pellicole ad ossalati: origine e significato nella conservazione delle opere d'arte», Milano: 113–125.Google Scholar
  56. Smith V.L., Punja Z.K., Jenkins S.F., (1986) —A histological study of infection of host tissue by Sclerotium rolfsii. Phytopathology,76755–759.Google Scholar
  57. Snetsselaar K.M., Whitney K.D., (1990) —Fungal calcium oxalate in mycorrhizae of Monotropa uniflora. Can J. Bot.,68533–543.Google Scholar
  58. Stone H.E., Armentrout V.N., (1985) —Production of oxalic acid by Sclerotium ceviporumduring infection of onion. Mycologia,77526–530.Google Scholar
  59. Tanaka K., Nonaka F., (1981) —Synergistic action of oxalic acid pectolytic enzyme on the rot of onion bulb caused by Aspergillus niger. Ann. Phytopathol. Soc. Jpn.,47 (2166–174.Google Scholar
  60. Tomoyeda M., Inari T., Koshino Y., (1988) —Mechanism of oxalic acid fermentation by Aspergillus niger. Nippon Nogeikagaku Kaishi,62 (6965–970.Google Scholar
  61. Traquair J.A., (1987) —Oxalic acid and calcium oxalate produced by Leucostoma cinctaand Leucostoma persooniiin culture and in paeak bark tissues. Can. J. Bot.,65 (91952–1956.Google Scholar
  62. Tu J.C., (1985) —Tolerance of white bean (Phaseolus vulgaris)to white mold (Sclerotinia sclerotiorum)associated with tolerance to oxalic acid. Physiological Plant Pathology,26111–117.Google Scholar
  63. Verrecchia E.P., (1990a) —Litho-diagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semiarid calcretes, Nazareth, Israel. Geomicrobiology Journal,887–99.Google Scholar
  64. Verrecchia E.P., (1990b) —Incidence de l'activité fungique sur l'induration des profils carbonatés de type calcrete pédologique. L'exemple du cycle oxalate-carbonate de calcium dans les encroutements calcaires de Galilée (Israele). C.R. Acad. Sci. Paris, t. 311, série II: 1367–1374.Google Scholar
  65. Verrecchia E.P., Dumont J.L., Rolko K.E., (1990) —Do fungi building limestones exist in semi-arid regions? Naturwissenschaften,77584–586.Google Scholar
  66. Whitney K.D., Arnott H.J., (1986a) —Morphology and development of calcium oxalate deposits in Gilbertella persicaria(Mucorales). Mycologia,78 (142–51.Google Scholar
  67. Whitney K.D., Arnott H.J., (1986b) —Calcium oxalate crystals and basidiocarp dehiscence in Geastrum saccatum(Gasteromycetes). Mycologia,78 (4649–656.Google Scholar
  68. Whitney K.D., Arnott H.J., (1987) —Calcium oxalate crystal morphology and development in Agaricus bisporus. Mycologia,79 (2180–187.Google Scholar
  69. Whitney K.D., Arnott, H.J., (1988) —The effect of calcium on mycelial growth and calcium oxalate crystal formation in Gilbertella persicaria(Mucolares). Mycologia,80 (5707–715.Google Scholar

Copyright information

© The Italian Association of Aerobiology 1993

Authors and Affiliations

  • Daniela Pinna
    • 1
  1. 1.Soprintendenza Beni Artistici e StoriciBolognaItaly

Personalised recommendations