Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 1, pp 91–109 | Cite as

Pheromone differences between sibling taxaDiachrysia chrysitis (linnaeus, 1758) andD. tutti (Kostrowicki, 1961) (Lepidoptera: Noctuidae)

  • Christer Löfstedt
  • Bill S. Hansson
  • Miklos Tòth
  • Gabor Szöcs
  • Vincas Buda
  • Marie Bengtsson
  • Nils Ryrholm
  • Mats Svensson
  • Ernst Priesner
Article

Abstract

The noctuid sibling taxaDiachrysia chrysitis s. str. andD. tutti, of yet uncertain taxonomic status, have previously been shown to possess differences in morphology and to be attracted to different mixtures of the two presumed pheromone components (Z)-5-decenyl acetate and (Z)-7-decenyl acetate. TypicalD. tutti males (clearly broken forewing marking) are known to respond to a 2: 100 mixture of the two isomers, whereasD. chrysitis males (unbroken marking) are attracted to a 100: 10 mixture. We investigated female pheromone production and male electroantennographic (EAG) response inDiachrysia families raised in the laboratory from field-collected gravid females. Extracts of individual females from typicalD. tutti andD. chrysitis families were subjected to gas chromatography with simultaneous flame ionization and electroantennographic detection. All females produced mixtures of Z5- and Z7-10:OAc, but femaleD. chrysitis produced predominantly Z5-10:OAc and the antennae of their brothers responded more strongly to the Z5 peak than to the Z7-10:OAc peak, whereas the opposite was true forD. tutti families. The pheromone components were shown to be biosynthesized from hexadecanoic and tetradecanoic acid, respectively by Z11-desaturation followed by chain shortening, reduction, and acetylation. The EAG responses of males trapped with the typicalD. tutti andD. chrysitis blends, as well as with an intermediate blend, were investigated. Males trapped with theD. tutti mixture almost exclusively had a clearly broken wing marking and showed strongest EAG response to Z7-10:OAc. The intermediate blend and theD. chrysitis mixture gave more mixed catches, but with a prevalence of males with an unbroken (or almost unbroken) wing marking and with a higher mean response to Z5-10:OAc. Some males with typicalD. tutti EAG responses were attracted in the field to theD. chrysitis pheromone. In the flight tunnel someD. chrysitis males were attracted also to theD. tutti mixture. This indicates that cross attraction may take place between the two taxa under natural conditions.

Key Words

Lepidoptera Noctuidae Diachrysia chrysitis Diachrysia tutti pheromones sibling taxa electroantennographic responses biosynthesis cross-attraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arn, H., Städler, E., andRauscher, S. 1975. The electroantennographic detector—a selective and sensitive tool in the gas chromatographic analysis of insect pheromones.Z. Naturforsch. 30:722–725.Google Scholar
  2. Arn, H., Rauscher, S., andSchmid, A. 1979. Sex attractant formulations and traps for the grape mothEupoecilia ambiguella Hb.Mitt. Schweiz. Entomol. Ges. 52:49–55.Google Scholar
  3. Bengtsson, M. 1988. Structure-activity relationships for analogues of (Z)-5-decenyl acetate, a sex pheromone component of the turnip moth,Agrotis segetum. Synthesis and Conformational analysis. PhD thesis. University of Lund, Sweden.Google Scholar
  4. Bengtsson, M., andLiliefors, T. 1988. DMPU: An alternative to HMPT in moth sex pheromone synthesis.Synthesis 3:250–252.Google Scholar
  5. Bjostad, L.B., andRoelofs, W.L. 1981. Sex pheromone biosynthesis from radiolabeled fatty acids in the redbanded leafroller moth.J. Biol. Chem. 256:7936–7940.PubMedGoogle Scholar
  6. Bjostad, L.B., andRoelofs, W.L. 1986. Sex pheromone biosynthesis in the redbanded leafroller moth, studied by mass-labeling with stable isotopes and analysis with mass spectrometry.J. Chem. Ecol. 12:431–450.Google Scholar
  7. Bruun, H.H. 1987. Longitudinal ridge density of hind-wing scales ofDiachrysia chrysitis (L.) andD. tutti (Kostr.) captured with pheromones (Lepidoptera, Noctuidae).Not. Entomol. 67:125–127.Google Scholar
  8. Corey, E.J., andSmidt, G. 1979. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media.Tetrahedron Lett. 5:399–402.Google Scholar
  9. Hansson, B.S., Löfstedt, C., andRoelofs, W.L. 1987. Inheritance of olfactory response to sex pheromone components inOstrinia nubilalis.Naturwissenschaften 74:497–499.Google Scholar
  10. Houx, N.W.H., Voerman, S., andJongen, W.M.F. 1974. Purification and analysis of synthetic insect sex attractants by liquid chromatography on a silver-loaded resin.J. Chromatogr. 96:25–32.PubMedGoogle Scholar
  11. Klun, J.A., andHuettel, M.D. 1988. Genetic regulation of sex pheromone production and response: Interaction of sympatric pheromonal races of the European corn borer,Ostrinia nubilalis (Lepidoptera: Pyralidae).J. Chem. Ecol. 14:2047–2061.Google Scholar
  12. Klun, J.A., and cooperators. 1975. Insect sex pheromones: Intraspecific pheromonal variability ofOstrinia nubilalis in North America and Europe.Environ. Entomol. 4:891–894.Google Scholar
  13. Kochansky, J., Cardé, R.T., Liebherr, J., andRoelofs, W.L. 1975. Sex pheromone of the European corn borer,Ostrinia nubilalis (Lepidoptera: Pyralidae), in New York.J. Chem. Ecol. 1:225–231.Google Scholar
  14. Kostrowicki, A.S. 1961. Studies on the Palearctic species of the subfamily Plusiinae (Lepidoptera, Phalaenidae).Acta. Zool. Cracov. 6:376–472.Google Scholar
  15. Lempke, B.J. 1965.Plusia tutti Kostrowicki andPlusia chrysitis L.Entomol. Ber., Amsterdam 25:73–76.Google Scholar
  16. Leznoff, C., Fyles, T.M., andWeatherston, J. 1977. The use of polymer supports in organic synthesis. VIII. Solid phase synthesis of insect sex attractants.Can. J. Chem. 55:1143–1153.Google Scholar
  17. Löfstedt, C. 1990. Population variation in moth pheromone communication systems and its genetic control.Entomol. Exp. Appl. 54:199–218.Google Scholar
  18. Löfstedt, C., andBengtsson, M. 1988. Sex pheromone biosynthesis of (E,E)-8,10-dodecadienol in codling mothCydia pomonella involvesE9 desaturation.J. Chem. Ecol. 14:903–915.Google Scholar
  19. Löfstedt, C., Elmfors, A., Sjögren, M., andWijk, E. 1986. Confirmation of sex pheromone biosynthesis from (16-D3)-palmitic acid in the turnip moth.Experientia 42:1059–1061.Google Scholar
  20. Löfstedt, C., Menken, S.B.J., andHerrebout, W.H. 1991. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths.Chemoecology 2:20–28.Google Scholar
  21. Priesner, E. 1985. Artspezifische Sexuallockstoffe für Männchen vonDiachrysia chrysitis (L.) undD. tutti (Kostr.) (Lepidoptera, Noctuidae:Plusiinae).Mitt. Schweiz. Entomol. Ges. 58:373–391.Google Scholar
  22. Rezbanyai-Reser, L. 1985.Diachrysia chrisitis (Linnaeus, 1758) undD. tutti (Kostrowicki, 1961) in der Schweiz.Mitt. Schweiz. Entomol. Ges. 58:345–372.Google Scholar
  23. Roelofs, W.L., Glover, T., Tang, X-H., Sreng, I., Robbins, P., Eckenrode, C. Löfstedt, C., Hansson, B., andBengtsson, B.O. 1987. Sex pheromone production and perception in European cornborer moths is determined by both autosomal and sex-linked genes.Proc. Natl. Acad. Sci. U.S.A. 84:7585–7589.Google Scholar
  24. Rumbo, E.R. 1981. An inexpensive electroantennogram amplifier, storage and display unit.CSIRO Div. Entomol. Rep. 22:1–19.Google Scholar
  25. Ryan, J.A. 1960. Significance tests for multiple comparison of proportions, variances and other statistics.Psychol. Bull. 57:318–328.PubMedGoogle Scholar
  26. Svensson, I., Douwes, P., andStille, B. 1989. AreDiachrysia chrysitis (L.) andD. tutti (Kostrowicki) different species? (Lepidoptera: Noctuidae).Entomol. Scand. 20:15–22.Google Scholar
  27. Taber, D. 1982. TLC mesh column chromatography.J. Org. Chem. 47:1351–1352.Google Scholar
  28. Tòth M., Szöcs, G., Molnar, J., andSzarukan, I. 1988. Field tests with sex attractants ofDiachrysia chrysitis andD. tutti (Lepidoptera: Noctuidae) at several sites in Hungary.Z. Naturforsch. 43c:20–23.Google Scholar
  29. Urbahn, E. 1966. Zur ArtenfragePlusia chrysitis L.-tutti Kostrowicki (Lepidoptera, Noctuidae).Reichenbachia 6:129–136.Google Scholar
  30. Urbahn, E. 1967. Zur Klärung derPlusia chrysitis-tutti-Frage durch Eizuchtuntersuchungen (Lepidoptera, Noctuidae).Reichenbachia 8:133–137.Google Scholar
  31. Wolf, W.A., Bjostad, L.B., andRoelofs, W.L. 1981. Correlation of fatty acid and pheromone component structures in sex pheromone glands of ten lepidopteran species.Environ. Entomol. 10:943–946.Google Scholar
  32. Wong, J.W., Paliswamy, P., Underhill, E.W., Steck, W.F., andChisholm, M.D. 1984. Sex pheromone components of Fall Cankerworm moth,Alsophila pometaria. Synthesis and field trapping.J. Chem. Ecol. 10:1579–1596.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Christer Löfstedt
    • 1
  • Bill S. Hansson
    • 1
  • Miklos Tòth
    • 2
  • Gabor Szöcs
    • 2
  • Vincas Buda
    • 3
  • Marie Bengtsson
    • 4
  • Nils Ryrholm
    • 5
  • Mats Svensson
    • 1
  • Ernst Priesner
    • 6
  1. 1.Department of EcologyLund UniversityLundSweden
  2. 2.Plant Protection Institute of the Hungarian Academy of SciencesBudapestHungary
  3. 3.Laboratory of Chemical EcologyInstitute of EcologyVilnius MTPLithuania
  4. 4.Department of Organic Chemistry 3Lund UniversityLundSweden
  5. 5.Section of Entomology, Department of ZoologyUppsala UniversityUppsalaSweden
  6. 6.Max-Planck-Institut für VerhaltensphysiologieSeewiesenGermany

Personalised recommendations