Skip to main content
Log in

A review of methods used to determine the fractal dimension of linear features

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

An in-depth review of the more commonly applied methods used in the determination of the fractal dimension of one-dimensional curves is presented. Many often conflicting opinions about the different methods have been collected and are contrasted with each other. In addition, several little known but potentially useful techniques are also reviewed. General recommendations which should be considered whenever applying any method are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahnert, F., 1984, Local Relief and the Height Limits of Mountain Ranges: Am. J. Sci., v. 284, p. 1035–1055.

    Google Scholar 

  • Andrle, R., 1992, Estimating Fractal Dimension with the Divider Method in Geomorphology: Geomorphology, v. 5, p. 131–141.

    Google Scholar 

  • Andrle, R., and Abrahams, A. D., 1989, Fractal Techniques and the Surface Roughness of Talus Slopes: Earth Surf. Proc. Landforms, v. 14, p. 197–209.

    Google Scholar 

  • Andrle, R., and Abrahams, A. D., 1990, Fractal Techniques and the Surface Roughness of Talus Slopes: Reply: Earth Surf. Proc. Landforms, v. 15, p. 287–290.

    Google Scholar 

  • Aviles, C. A., Scholz, C. H., and Boatwright, J., 1987, Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault: J. Geophys. Res., v. 92(B1), p. 331–344.

    Google Scholar 

  • Bartlett, M., 1991, Comparison of Methods for Measuring Fractal Dimension: Austr. Phys. Eng. Sci. Med., v. 14, p. 146–152.

    Google Scholar 

  • Bartoli, F., Philippy, R., Doirisse, M., Niquet, S., and Dubuit, M., 1991, Structure and Self-Similarity in Silty and Sandy Soils: The Fractal Approach: J. Soil Sci., v. 42, p. 167–185.

    Google Scholar 

  • Batty, M., and Longley, P., 1986, The Fractal Simulation of Urban Structure: Env. Plan. A, v. 18, p. 1143–1179.

    Google Scholar 

  • Batty, M., and Longley, P., 1987, Urban Shapes as Fractals: Area, v. 19, p. 215–221.

    Google Scholar 

  • Benguigui, L., and Daoud, M., 1991, Is the Suburban Railway System a Fractal? Geograph. Anal., v. 23, p. 362–368.

    Google Scholar 

  • Breyer, S., and Snow, S., 1992, Drainage Basin Perimeters: A Fractal Significance: Geomorphology, v. 5, p. 143–157.

    Google Scholar 

  • Brown, S. A., 1987. A Note on the Description of Surface Roughness Using Fractal Dimension: Geophys. Res. Lett., v. 14, p. 1095–1098.

    Google Scholar 

  • Brown, S. R., and Scholz, C. H., 1985, Broad Bandwidth Study of the Topography of Natural Rock Surfaces: J. Geophys. Res., v. 90, p. 12,575–12,582.

    Google Scholar 

  • Bruno, B., Taylor, G., Rowland, S., Lucey, P., and Self, S., 1992, Lava Flows are Fractals: Geophys. Res. Lett., v. 19, p. 305–308.

    Google Scholar 

  • Burrough, P. A., 1981, Fractal Dimensions of Landscapes and Other Environmental Data: Nature, v. 294, p. 240–242.

    Google Scholar 

  • Burrough, P. A., 1984, The Application of Fractal Ideas to Geophysical Phenomena: Inst. Math. App. Bull., v. 20, p. 36–42.

    Google Scholar 

  • Carr, J., and Benzer, W., 1991, On the Practice of Estimating Fractal Dimension: Math. Geol., v. 23, p. 945–958.

    Google Scholar 

  • Clark, N. N., 1986, Three Techniques for Implementing Digital Fractal Analysis of Particle Shape: Powder Technol., v. 46, p. 45–52.

    Google Scholar 

  • Clarke, K., and Schweizer, D., 1991, Measuring the Fractal Dimension of Natural Surfaces Using a Robust Fractal Estimator: Cartogr. Geograph. Inf. Sys., v. 18, p. 37–47.

    Google Scholar 

  • Culling, W. E. H., 1986, Highly Erratic Spatial Variability of Soil-pH on Iping Common, West Sussex: Catena, v. 13, p. 81–89.

    Google Scholar 

  • Culling, W. E. H., and Datko, M., 1987, The Fractal Geometry of the Soil-Covered Landscape: Earth Surf. Proc. Landforms, v. 12, p. 369–385.

    Google Scholar 

  • Dubuc, B., Roques-Carmes, C., Tricot, C., and Zucker, S., 1987, The Variation Method: A Technique to Estimate the Fractal Dimension of Surfaces: SPIE, v. 845, Visual Communications and Image Processing II, p. 241–248.

  • Dubuc, B., Quiniou, J., Roques-Carmes, C., Tricot, C., and Zuker, S., 1989a, Evaluating the Fractal Dimension of Profiles: Phys. Rev. A, v. 39, p. 1500–1512.

    Google Scholar 

  • Dubuc, B., Zucker, S., Tricot, C., Quiniou, J., and Wehbi, D., 1989b, Evaluating the Fractal Dimension of Surfaces: Proc. R. Soc. London A, v. 425, p. 113–127.

    Google Scholar 

  • Eastman, J. R., 1985, Single-Pass Measurement of the Fractal Dimension of Digitized Cartographic Lines: Paper presented at the Annual Conference of the Canadian Cartographic Association, 1985.

  • Feder, J., 1988,Fractals: Plenum, New York.

    Google Scholar 

  • Fox, C., and Hayes, D. E., 1985, Quantitative Methods for Analyzing the Roughness of the Seafloor: Rev. Geophys., v. 23, p. 1–48.

    Google Scholar 

  • Gagnepain, J., and Roques-Carmes, C. 1986, Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness: Wear, v. 109, p. 119–126.

    Google Scholar 

  • Gierhart, J. W., 1954, Evaluation of Methods of Area Measurement: Surveying Mapping, v. 14, p. 460–465.

    Google Scholar 

  • Gilbert, L. E., 1989, Are Topographic Data Sets Fractal? Pure Appl. Geophys., v. 131, p. 241–254.

    Google Scholar 

  • Goff, J., 1990, Comment on “Fractal Mapping of Digitized Images: Applications to the Topography of Arizona and Comparisons with Synthetic Images” by J. Huang and D. Turcotte: J. Geophys. Res., v. 95 (p.B4), 5159.

    Google Scholar 

  • Goodchild, M. F., 1982, The Fractional Brownian Process as a Terrain Simulation Model: Modelling Simulation, v. 13, p. 1133–1137.

    Google Scholar 

  • Goodchild, M. F., and Mark, D. M., 1987, The Fractal Nature of Geographic Phenomena: Ann. of the AAG, v. 77, p. 265–278.

    Google Scholar 

  • Hayward, J., Orford, J., and Whalley, W., 1989, Three Implementations of Fractal Analysis of Particle Outlines: Comput. Geosci., v. 15, p. 199–207.

    Google Scholar 

  • Hough, S., 1989, On the Use of Spectral Methods for the Determination of Fractal Dimension: Geophys. Res. Lett., v. 14, p. 1095–1098.

    Google Scholar 

  • Huang, J., and Turcotte, D. L., 1989, Fractal Mapping of Digitized Images: Application to the Topography of Arizona and Comparisons with Synthetic Images: J. Geophys. Res., v. 94, p. 7491–7495.

    Google Scholar 

  • Huang, J., and Turcotte, D., 1990, Reply: J. Geophys. Res., v. 95(B4), p. 5161.

    Google Scholar 

  • Jones, J., Thomas, R., and Earwicker, P., 1989, Fractal Properties of Computer-Generated and Natural Geophysical Data: Comput. Geosci., v. 15, p. 227–235.

    Google Scholar 

  • Kennedy, S., and Lin, W., 1986, FRACT-A Fortran Subroutine to Calculate the Variables Necessary to Determine the Fractal Dimension of Closed Forms: Comput. Geosci., v. 12, p. 705–712.

    Google Scholar 

  • Kent, C., and Wong, J., 1982, An Index of Littoral Zone Complexity and Its Measurement: Can. J. Fisheries Aquatic Sci., v. 39, p. 847–853.

    Google Scholar 

  • Klinkenberg, B., 1988, The Theory of Island Biogeography Applied to the Vascular Flora of the Erie Islands,in J. Downhower (Ed.),The Biography of the Island Region of Western Lake Erie: Ohio State University Press, Columbus, p. 93–105.

    Google Scholar 

  • Klinkenberg, B., and Clarke, K., 1992, Exploring the Fractal Mountains,in I. Palaz and S. Sengupta (Eds.),Automated Pattern Analysis in Petroleum Exploration: Springer-Verlag, New York, p. 201–212.

    Google Scholar 

  • Klinkenberg, B., and Goodchild, M. F., 1992, The Fractal Properties of Topography: A Comparison of Methods: Earth Surf. Proc. Landforms, v. 17, p. 217–234.

    Google Scholar 

  • Krige, D. G., 1966, Two-Dimensional Weighted Moving Average Trend Surfaces for Ore Valuation, Journal of the South African Institute of Mining and Metallurgy: Symposium—Mathematical Statistics and Computer Applications in Ore Evaluation.

  • Laverty, M., 1987, Fractals in Karst: Earth Surf. Proc. Landforms, v. 12, p. 475–480.

    Google Scholar 

  • Liebovitch, L., and Toth, T., 1989, A Fast Algorithm to Determine Fractal Dimensions by Box Counting: Phys. Lett. A., v. 141, p. 386–390.

    Google Scholar 

  • Lovejoy, S., 1982, Area-Perimeter Relation for Rain and Cloud Areas: Science, v. 216, p. 185–187.

    Google Scholar 

  • Lovejoy, S., and Mandelbrot, B. B., 1985, Fractal Properties of Rain, and a Fractal Model. Tellus, 37(A): 209–232.

    Google Scholar 

  • Lovejoy, S., and Schertzer, D., 1986, Scale Invariance, Symmetries, Fractals, and Stochastic Simulations of Atmospheric Phenomena. Bull. Am. Meteorol. Soc., v. 67, p. 21–32.

    Google Scholar 

  • Lovejoy, S., and Schertzer, D., 1987, Extreme Variability, Scaling and Fractals in Remote Sensing Analysis and Simulation,in J. P. Muller (Ed.),Digital Image Processing in Remote Sensing: Taylor and Francis, London.

    Google Scholar 

  • Lovejoy, S., Schertzer, D., and Tsonis, A., 1987, Functional Box-Counting and Multiple Elliptical Dimensions in Rain: Science, v. 235, p. 1036–1038.

    Google Scholar 

  • Maling, D. H., 1968, How Long is a Piece of String? Cartograph. J., v. 5, p. 147–156.

    Google Scholar 

  • Maling, D. H., 1992,Coordinate Systems and Map Projections, 2nd ed.: Pergamon Press, Oxford.

    Google Scholar 

  • Malinverno, A., 1989, Testing Linear Models of Sea-Floor Topography: Pageoph, v. 131, p. 139–155.

    Google Scholar 

  • Mandelbrot, B., 1967, How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension: Science, v. 156, p. 636–638.

    Google Scholar 

  • Mandelbrot, B., 1975, Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of Coastlines, and the Number-Area Rule for Islands: Proc. Nat. Acad. Sci. USA, v. 72, p. 3825–3828.

    Google Scholar 

  • Mandelbrot, B., 1982,The Fractal Geometry of Nature: Freeman, New York.

    Google Scholar 

  • Mandelbrot, B., 1985, Self-Affine Fractals and the Fractal Dimension: Phys. Scripta, v. 32, p. 257–260.

    Google Scholar 

  • Mandelbrot, B., 1986, Self-Affine Fractal Sets I, II, III,in L. Pietronero and E. Tosatti (Eds.),Fractals in Physics: Elsevier Science Publishers, B.V.

    Google Scholar 

  • Mandelbrot, B., 1988, An Introduction to Multifractal Distribution Functions,in H. Stanley and N. Ostrowsky (Eds.),Fluctuations and Pattern Formation: Kluwer Academic, Dordrecht.

    Google Scholar 

  • Mandelbrot, B., 1989, Multifractral Measures, Especially for the Geophysicists: Pageoph, v. 131, p. 5–42.

    Google Scholar 

  • Mandelbrot, B., Passoja, D., and Paullay, A., 1984, Fractal Character of Fracture Surfaces of Metals: Nature, v. 308, p. 721–722.

    Google Scholar 

  • Mark, D. M., and Aronson, P. B., 1984, Scale-Dependent Fractal Dimensions of Topographic Surfaces: An Empirical Investigation, with Applications in Geomorphology: Math. Geol., v. 16, p. 671–683.

    Google Scholar 

  • Matsushita, M., and Ouchi, S., 1989, On the Self-Affinity of Various Curves: Physica D, v. 38, p. 246–251.

    Google Scholar 

  • Matsushita, M., Ouchi, S., and Honda, K., 1991, On the Fractal Structure and Statistics of Contour Lines on a Self-Affine Surface: J. Phys. Soc. Jpn., v. 60, p. 2109–2112.

    Google Scholar 

  • McBratney, A. B., and Webster R., 1986, Choosing Functions for Semi-Variograms of Soil Properties and Fitting Them to Sampling Estimates: J. Soil Sci., v. 37, p. 617–639.

    Google Scholar 

  • Meakin, P., 1991, Fractal Aggregates in Geophysics: Rev. Geophys., v. 29, p. 317–354.

    Google Scholar 

  • Milne, B. T., 1988, Measuring the Fractal Geometry of Landscapes: Appl. Mathematics Computation, v. 27, p. 67–79.

    Google Scholar 

  • Müller, J.-C., 1986, Fractal Dimension and Inconsistencies in Cartographic Line Representations: Cartograph. J., v. 23, p. 123–130.

    Google Scholar 

  • Müller, J.-C., 1987, Fractal and Automated Line Generalization: Cartograph. J., v. 24.

  • Morse, D., Lowton, J., Dodson, M., and Williamson, M., 1985, Fractal Dimension of Vegetation and the Distribution of Anthropod Body Lengths: Nature, v. 314, p. 731–733.

    Google Scholar 

  • Norton, D., and Sorenson, S., 1989, Variations in Geometric Measures of Topographic Surfaces Underlain by Fractured Granitic Plutons: Pure Appl. Geophys., v. 131, p. 77–97.

    Google Scholar 

  • Orey, S., 1970, Gaussian Sample Functions and the Hausdorff Dimension of Level Crossings: Z. Wahrsheinlickeitstneorie, v. 15, p. 249–256.

    Google Scholar 

  • Ouchi and Matsushita, 1992, Measurement of Self-Affinity on Surfaces as a Trial Application of Fractal Geometry to Landform Analysis: Geomorphology, v. 5, p. 115–130.

    Google Scholar 

  • Paumgartner, D., Losa, G., and Weibel, E. R., 1981, Resolution Effect on the Stereological Estimation of Surface and Volume and Its Interpretation in Terms of Fractal Dimensions: Stereology 5: J. Microsc., v. 121, 51–63.

    Google Scholar 

  • Peitgen, H.-O., and Saupe, D. (Eds.), 1988,The Science of Fractal Images: Springer-Verlag, New York.

    Google Scholar 

  • Peitgen, H.-O., Jurgens, H., and Saupe, D., 1992,Fractals for the Classroom. Part One: Introduction to Fractals and Chaos: Springer-Verlag, New York.

    Google Scholar 

  • Pentland, A., 1984, Fractal-Based Description of Natural Scenes: IEEE PAMI, v. 6, p. 664–674.

    Google Scholar 

  • Power, W., and Tullis, T., 1991, Euclidean and Fractal Models for the Description of Rock Surface Roughness: J. Geophys. Res., v. 96, p. 415–424.

    Google Scholar 

  • Power, W., Tullis, T., Brown, S., Boitnott, G., and Scholz, C., 1987, Roughness of Natural Fault Surfaces: Geophys. Res. Lett., v. 14, p. 29–32.

    Google Scholar 

  • Reams, M., 1992, Fractal Dimensions of Sinkholes: Geomorphology, v. 5, p. 159–165.

    Google Scholar 

  • Rees, W., 1992, Measurement of the Fractal Dimension of Icesheet Surfaces Using Landsat Data: Int. J. Remote Sensing, v. 13, p. 663–671.

    Google Scholar 

  • Reeve, R., 1992, A Warning About Standard Errors When Estimating the Fractal Dimension: Comput. Geosci., v. 18, p. 89–91.

    Google Scholar 

  • Richardson, L. F., 1961, The Problem of Contiguity: An Appendix to “Statistics of Deadly Quarrels”: General Systems Yearbook, v. 6, p. 139–187.

    Google Scholar 

  • Rigaut, J.-P., 1991, Fractals, Semi-Fractals and Biometry,in G. Cherbi (Ed.),Fractals: Non-Integral Dimensions and Applications: John Wiley & Sons, Chicester, p. 151–187.

    Google Scholar 

  • Roy, A., Gravel, G., and Gauthier, C., 1987, Measuring the Dimension of Surfaces: A Review and Appraisal of Different Methods, Proceedings: Auto-Carto Eight, p. 68–77.

  • Sakellariou, M., Nakos, B., and Mitsakaki, C., 1991, On the Fractal Character of Rock Surfaces: Int. J. Rock Mech. Min. Sci. Geomech. Abs., v. 28, p. 527–533.

    Google Scholar 

  • Sarraille, J., 1991, Developing Algorithms for Measuring Fractal Dimension. e-mail notes from john@ishi.csustan.edu.

  • Scholz, C. H., and Aviles, C. A., 1986, The Fractal Geometry of Faults and Faulting: Earthquake Source Mechanics (Geophysical Monograph 37) M. Ewing Ser. 6.

  • Schwarz, H., and Exner, H. E., 1980, The Implementation of the Concept of Fractal Dimension on a Semi-Automatic Image Analyser: Powder Technol., v. 27, p. 207–213.

    Google Scholar 

  • Shelberg, M. C., Moellering, H., and Lam, N. S., 1982, Measuring the Fractal Dimensions of Empirical Cartographic Curves, Proceedings: Auto-Carto Five, p. 481–490.

  • Shelberg, M. C., Moellering, H., and Lam, N. S., 1983, Measuring the Fractal Dimensions of Surfaces, Proceedings: Auto-Carto Six, p. 319–328.

  • Turcotte, D., 1989, Fractals in Geology and Geophysics: Pageoph., v. 131, p. 171–196.

    Google Scholar 

  • Turcotte, D., 1992,Fractals and Chaos in Geology and Geophysics: Cambridge University Press, Cambridge.

    Google Scholar 

  • Vignes-Adler, M., Le Page, A., and Adler, P., 1991, Fractal analysis of Fracturing in Two African Regions, from Satellite Imagery to Ground Scale: Tectonophysics, v. 196, p. 69–86.

    Google Scholar 

  • Wong, P., 1987, Fractal Surfaces in Porous Media,in Banavar, J., Koplik, J., and Winkler, K. (Eds.),Physics and Chemistry of Porous Media II, AIP Conference Proceedings, Vol. 154: American Institute of Physics, New York, p. 304–318.

    Google Scholar 

  • Woronow, A., 1981, Morphometric Consistency with the Hausdorff-Besicovitch Dimension: Math. Geol., v. 13, p. 201–216.

    Google Scholar 

  • Zar, J., 1968, Calculation and Miscalculation of the Allometric Equation at a Model in Biological Data: Bioscience, v. 18, p. 1118–1120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinkenberg, B. A review of methods used to determine the fractal dimension of linear features. Math Geol 26, 23–46 (1994). https://doi.org/10.1007/BF02065874

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02065874

Key words

Navigation