Theoretical and Mathematical Physics

, Volume 103, Issue 3, pp 681–700 | Cite as

Integrable many-body systems in the field theories

  • A. Gorsky


We review recent results which clarify the role of the integrable many-body problems within the quantum field theory framework. They describe the dynamics of the topological degrees of freedom in the theories which are obtained by perturbing the topological ones by the proper Hamiltonians and sources. The interpretation of the many-body dynamics as a motion on the different moduli spaces as well as the property of duality is discussed. A tower of many-body systems can be derived from a tower of the field theories with appropriate phase spaces which have a transparent interpretation in terms of the group theory. The appearance of Calogero-type systems in different physical phenomena is mentioned.


Field Theory Phase Space Quantum Field Theory Modulus Space Group Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Calogero,J. Math. Phys.,12, 419 (1971); J. Moser,Adv. Math.,16, 197–220 (1975); B. Sutherland,Phys. Rev.,A5, 1372 (1972).Google Scholar
  2. 2.
    M. Toda,J. Phys. Soc. Jpn.,20, 431 (1967).Google Scholar
  3. 3.
    M. Olshanetsky and A. Perelomov,Phys. Reps.,71, 313 (1981).Google Scholar
  4. 4.
    A. M. Perelomov and M. A. Olshanetsky,Phys. Rep.,94, 6 (1983).Google Scholar
  5. 5.
    D. Kazhdan, B. Kostant, and S. Sternberg,Commun. Pure Appl. Math.,31, 481–507 (1978).Google Scholar
  6. 6.
    M. A. Olshanetsky and A. Perelomov,Teor. Mat. Fiz.,45, 3 (1980).Google Scholar
  7. 7.
    S. N. M. Ruijsenaars,CMP,110, 191–213 (1987); S. N. M. Ruijsenaars and H. Schneider,Ann. Phys.,170, 370 (1986).Google Scholar
  8. 8.
    A. Gorsky and N. Nekrasov,Nucl. Phys.,B414, 214 (1994).Google Scholar
  9. 9.
    A. Gorsky and N. Nekrasov, Preprint hep-th-9401017.Google Scholar
  10. 10.
    A. Gorsky and N. Nekrasov, Preprint hep-th-9401021.Google Scholar
  11. 11.
    N. Hitchin,Duke. Math. J.,54, 91 (1987).Google Scholar
  12. 12.
    S. Iso and S. J. Rey, Preprint hep-th-9406192.Google Scholar
  13. 13.
    A. P. Polychronakos,Nucl. Phys.,B324, 597 (1989); J. Leinaas and J. Myrheim,Phys. Rev.,B37, 9286 (1988); L. Brink, T. H. Hansson, S. Konstein, and M. A. Vasiliev,Nucl. Phys.,B401, 591 (1993).Google Scholar
  14. 14.
    N. S. Manton,PRL,60B, 191 (1988); M. F. Atiyah and N. S. Manton,Phys. Lett.,B222, 438 (1989).Google Scholar
  15. 15.
    J. Avan and A. Jevicki,Phys. Lett.,B266, 35 (1991).Google Scholar
  16. 16.
    A. Migdal,Zh. Eksp. Teor. Fiz.,69, 810 (1975); V. Rusakov,Mod. Phys. Lett.,bf A5, 693 (1990); E. Witten, Preprint IASSNS-HEP-92/15; D. Gross and W. Taylor,Nucl. Phys.,B400, 181 (1993); D. Gross and W. Taylor,Nucl. Phys.,B403, 395 (1993).Google Scholar
  17. 17.
    J. A. Minahan and A. P. Polychronakos,Phys. Lett.,B302, 265 (1993); M. Douglas, Preprint hep-th-9409098.Google Scholar
  18. 18.
    A. Alekseev and S. Shatashvili,CMP,128, 197 (1990).Google Scholar
  19. 19.
    E. Witten,CMP,144 (1992); J. Sonnershtein and S. Yankelowicz,Nucl. Phys.,B393, 301 (1993).Google Scholar
  20. 20.
    M. Blau and G. Thompson,Nucl. Phys.,B408, 345–390 (1993); A. Gerasimov, Preprints UUITP-16/93, hep-th-9305090.Google Scholar
  21. 21.
    N. Nekrasov (to appear).Google Scholar
  22. 22.
    S. N. Ruijsenaars, in:Integrable and Superintegrable Systems (B. Kupershmidt, ed.), World Scientific, Singapore (1990), p. 165; P. Freund and A. Zabrodin,CMP,147, 277 (1992); O. Babelon and D. Bernard,Phys. Lett.,B317, 363 (1993).Google Scholar
  23. 23.
    I. Krichever,Funkts. Anal. Prilozh.,14, 45 (1980).Google Scholar
  24. 24.
    V. I. Inozemtsev,CMP,121, 629 (1989).Google Scholar
  25. 25.
    E. Sklyanin,Funkts. Anal. Appl.,17, 273 (1983).Google Scholar
  26. 26.
    A. Gorsky and A. Zabrodin,J. Phys.,A26, L635 (1993).Google Scholar
  27. 27.
    S. Ruijsenaars,CMP,110, 191 (1987).Google Scholar
  28. 28.
    S. N. Ruijsenaars,CMP,115, 127 (1988).Google Scholar
  29. 29.
    A. Alekseev and A. Malkin,CMP,162, 147 (1994); A. Alekseev, Preprint hep-th-9311074.Google Scholar
  30. 30.
    V. Fock and A. Rosly,Moduli of flat connections and classical r-matrix, Preprint ITEP-27/93.Google Scholar
  31. 31.
    A. Gorsky, V. Fock, N. Nekrasov, and V. Rubtsov (to appear).Google Scholar
  32. 32.
    L. Faddeev and S. Shatashvili,Teor. Mat. Fiz.,60, 206 (1984).Google Scholar
  33. 33.
    P. Etingof and A. Kirillov, Jr.,Duke. Math. J.,74, 585 (1994); P. Etingof, Preprint hep-th-9311132; P. Etingof, I. Frenkel, and A. Kirillov, Preprint hep-th-9407047; P. Etingof and A. Kirillov, Preprint hep-th-9403168.Google Scholar
  34. 34.
    I. Cherednik,Integration of many-body problems by affine KZ equations Preprint RIMS-776 (1991); A. Matsuo,Invent. Math. (1992).Google Scholar
  35. 35.
    F. D. M. Haldane,PRL,60, 635 (1988); B. S. Shastry,PRL,60, 639 (1988).Google Scholar
  36. 36.
    A. Minahan and A. Polychronakos, Preprint hep-th-9309044.Google Scholar
  37. 37.
    V. Pasquier, Preprint hep-th-94005104.Google Scholar
  38. 38.
    J. Avan and M. Talon,Phys. Lett.,B303, 33 (1993); J. Avan, O. Babelon, and M. Talon, Preprint hep-th-9306102.Google Scholar
  39. 39.
    E. Sklyanin, Preprints hep-th-9308060, LPTHE-93-42; T. Suzuki and H. W. Braden, Preprint hep-th-9312031.Google Scholar
  40. 40.
    G. J. Heckmann,Invent. Math.,98, 341 (1991); C. F. Dunkl,Trans. Amer. Math. Soc.,311 (1989); E. M. Opdam,Invent. Math.,98, 1 (1989).Google Scholar
  41. 41.
    H. Airault, H. McKean, and J. Moser,Commun. Pure. Appl. Math.,30, 95 (1977).Google Scholar
  42. 42.
    E. Previato, in:Proceedings of the Montreal Conference, Vol. 1991.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Gorsky
    • 1
  1. 1.Institute of Theoretical PhysicsUppsala UniversitySweden

Personalised recommendations