Hyperfine Interactions

, Volume 94, Issue 1, pp 1921–1927 | Cite as

Novel ternary iron-rich, rare-earth iron silicides: R3(Fe1−xSi x )22 (x ∼ 0.16)

  • J. M. Cadogan
  • Hong-Shuo Li
  • Jian-Min Xu
  • S. X. Dou
  • H. K. Liu
Magnetism and Magnetic Materials


In our search for new ternary rare-earth (R) iron silicon intermetallic compounds, a novel ternary phase with the chemical formula R3Fe18.5Si3.5 has been identified with the R∶Fe∶Si ratio in the range of 12–15∶74–78∶10–12. We have studied compounds with R=Gd, Tb, Dy, Ho, Er, Tm and Lu. All of the samples, except for R=Lu, form the new ternary phase3–22. X-ray diffraction data suggest that for R=Gd and Tb, the crystal structure is the rhombohedral Th2Zn17-type structure and for R=Dy, Ho, Er and Tm, the hexagonal Th2Ni17-type structure. We suggest that a 1/4 replacement of the “R” sites by Fe(Si) dumbbells in the CaCu5-type structure leads to the new3–22 phase, which is an ordered version of the TbCu7-type structure.57Fe Mössbauer spectroscopy has been used to determine the hyperfine parameters of the57Fe nuclei in the3–22 compounds. At 295 K, the average hyperfine field of the new3–22 phase ranges from 19.8 T (R=Ho) to 22.2 T (R=Gd). Thermogravimetric analysis (TGA) of these compounds gives Curie temperatures in the range 467 K (Tm)–549 K (Gd). Furthermore, our Mössbauer analysis enables us to investigate the preferential site occupancy shown by Si in these structures.


Intermetallic Compound Curie Temperature Ternary Phase Hyperfine Field Site Occupancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hong-Shuo Li and J.M.D. Coey,Handbook of Magnetic Materials, Vol. 6, ed. K.H.J. Buschow (Elsevier, Amsterdam, 1991) Ch. 1, p. 1.Google Scholar
  2. [2]
    J.M.D. Coey and Hong Sun, J. Magn. Magn. Mater. 87(1990)L251.Google Scholar
  3. [3]
    Y.-C, Yang, X.-D. Zhang, L.-S. Kong, Q. Pan, S.-L. Ge, J.-L. Yang, Y.-F. Ding, B.-S. Zhang, C.-T. Ye and L. Jin, Solid State Commun. 78(1991)313.Google Scholar
  4. [4]
    M.Q. Huang, A.T. Pedziwiatr, F. Pourarian, W.E. Wallace and S.G. Sankar,Proc. 7th Int. Symp. on Magnetic Anisotropy and Coercivity in R-T Alloys, Canberra, 1992, p. 301.Google Scholar
  5. [5]
    O.I. Bodak, E.I. Gladyshevskii, V.I. Yarovets, V.N. Davydov and T.V. Il'chuk, Inorg. Mater. 14(1978)366.Google Scholar
  6. [6]
    X. Yan, J. Liang and S. Xie, Phys. Stat. Sol. (a) 134(1992)77.Google Scholar
  7. [7]
    J. Yuan, L. Cao, L.-y. Yang and B.-g. Shen, IEEE Trans. Magn. 28(1992)2841.Google Scholar
  8. [8]
    S.J. Collocott, R.K. Day, J.B. Dunlop and R.L. Davis,Proc. 7th Int. Symp. on Magnetic Anistropy and Coercivity in R-T Alloys, Canberra, 1992, p. 437.Google Scholar
  9. [9]
    D. Givord, R. Lemaire, J.M. Moreau and E. Roudault, J. Less-Common Met. 29(1972)361.Google Scholar
  10. [10]
    M.T. Averbuch-Pouchot, R. Chevalier, J. Deportes, B. Kebe and R. Lemaire, J. Magn. Magn. Mater. 68(1987)190.Google Scholar
  11. [11]
    Hong-Shuo Li, J.M. Cadogan, Jian-Min Xu, S.X. Dou and H.K. Liu, these Proceedings, Hyp. Int.Google Scholar
  12. [12]
    P.C.M. Gubbens, A.M. van der Kraan, T.H. Jacobs and K.H.J. Buschow, J. Less-Common Met. 159(1990)173.Google Scholar
  13. [13]
    K. Strnat,Ferromagnetic Materials, Vol. 4, eds. E.P. Wohlfarth and K.H.J. Buschow (Elesevier, Amsterdam, 1988) Ch. 1, p. 131.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • J. M. Cadogan
    • 1
  • Hong-Shuo Li
    • 1
  • Jian-Min Xu
    • 2
  • S. X. Dou
    • 2
  • H. K. Liu
    • 2
  1. 1.School of PhysicsThe University of New South WalesSydneyAustralia
  2. 2.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations