Advertisement

Differentiation and integration of complex order of functions represented by trigonometrical series and generalized zeta-functions

  • M. Mikolás
Article

Keywords

Trigonometrical Series Complex Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Bohr, Über die Summabilität Dirichletscher Reihen,Gött. Nachr., (1909), pp. 247–262.Google Scholar
  2. [2]
    L. S. Bosanquet, A solution of the Cesàro summability problem for successively derived Fourier series,Proc. London Math. Soc. (2),46 (1940), pp. 270–289.Google Scholar
  3. [3]
    L. S. Bosanquet, The Cesàro summability of the successively derived allied series of a Fourier series,Proc. London Math. Soc. (2),49 (1945), pp. 63–76.Google Scholar
  4. [4]
    H. S. M. Coxeter, The functions of Schläfli and Lobatschefsky,Quart. J. Math., Oxford Ser.,6 (1935), pp. 13–29.Google Scholar
  5. [5]
    G. Doetsch,Handbuch der Laplace-Transformation, Vol. I–III (Basel, 1950–56).Google Scholar
  6. [6]
    L. Lejes Tóth, On the volume of a polyhedron in non-Euclidean space,Publ. Math. Debrecen,4 (1956), pp. 256–261.Google Scholar
  7. [7]
    J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor,Journal de Math. (4),8 (1892), pp. 101–186.Google Scholar
  8. [8]
    H. Hadwiger, Der Begriff der Ultrafunktion,Vierteljahrsschr. naturf. Ges. Zürich,92 (1947), pp. 31–42.Google Scholar
  9. [9]
    G. H. Hardy, The application of Abel's method of summation to Dirichlet's series,Quart. J. Math.,47 (1916), pp. 176–192.Google Scholar
  10. [10]
    G. H. Hardy,Divergent series (Oxford, 1949).Google Scholar
  11. [11]
    G. H. Hardy andJ. E. Littlewood, Some properties of fractional integrals. I–II,Math. Zeitschrift,27 (1928), pp. 565–606;34 (1932). pp. 403–439.Google Scholar
  12. [12]
    G. H. Hardy andM. Riesz,The general theory of Dirichlet's series (Cambridge, 1915).Google Scholar
  13. [13]
    G. H. Hardy andW. W. Rogosinski,Fourier series (Cambridge, 1944).Google Scholar
  14. [14]
    E. Hille,Functional analysis and semigroups, Amer. Math. Soc. Coll. Publ. XXXI (1948).Google Scholar
  15. [15]
    K. Knopp,Theorie und Anwendung der unendlichen Reihen,4. edition (Berlin-Heidelberg, 1950).Google Scholar
  16. [16]
    M. Kuniyeda, Note on Perron's integral and summability-abscissae of Dirichlet's series,Quart. J. Math.,47 (1916), pp. 193–219.Google Scholar
  17. [17]
    J. Marcinkiewicz andA. Zygmund, On the behaviour of trigonometric series and power series,Trans. Amer. Math. Soc.,50 (1941), pp. 407–453.Google Scholar
  18. [18]
    M. Mikolás, Farey series and their connection with the prime number problem. I,Acta Sci. Math. Szeged,13 (1950), pp. 93–117.Google Scholar
  19. [19]
    M. Mikolás, Mellinsche Transformation und Orthogonalität bei ζ(s, u); Verallgemeinerung der Riemannschen Funktionalgleichung von ζ(s),Acta Sci. Math. Szeged,17 (1956), pp. 143–164.Google Scholar
  20. [20]
    M. Mikolás, Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz,Publ. Math. Debrecen,5 (1957), pp. 44–53.Google Scholar
  21. [21]
    M. Mikolás, A simple proof of the functional equation for the Riemann zeta-function and a formula of Hurwitz,Acta Sci. Math. Szeged,18 (1957), pp. 261–263.Google Scholar
  22. [22]
    M. Mikolás, Über die Charakterisierung der Hurwitzschen Zetafunktion mittels Funktionalgleichungen,Acta Sci. Math. Szeged. 19 (1958), pp. 247–250.Google Scholar
  23. [23]
    M. Mikolás, On a problem of Hardy and Littlewood in the theory of diophantine approximations,Publ. Math. Debrecen (under press).Google Scholar
  24. [24]
    M. L. Misra, The summability (A) of the successively derived series of a Fourier series and its conjugate series,Duke Math. Journal,14 (1947), pp. 167–177.Google Scholar
  25. [25]
    N. Obreschkoff, Über dieC-Summierbarkeit der derivierten Reihen der Fourierschen Reihen,Abh. Preuss. Akad. Wiss. Math.-Nat. Kl., (1941), No. 15, pp. 1–28.Google Scholar
  26. [26]
    W. F. Osgood,Lehrbuch der Funktionentheorie, Vol. I, 2. edition (Leipzig-Berlin, 1912).Google Scholar
  27. [27]
    A. Rényi, On the summability of Cauchy—Fourier series,Publ. Math. Debrecen,1 (1950), pp. 162–164.Google Scholar
  28. [28]
    M. Riesz, Sur la représentation analytique des fonctions définies par des séries de Dirichlet,Acta Math.,35 (1912), pp. 253–270.Google Scholar
  29. [29]
    M. Riesz, L'intégrale de Riemann—Liouville et le problème de Cauchy,Acta Math.,81 (1949), pp. 1–223.Google Scholar
  30. [30]
    E. C. Titchmarsh, Principal value Fourier series,Proc. London Math. Soc. (2),23 (1925), pp. 41–43.Google Scholar
  31. [31]
    E. C. Titchmarsh,The theory of the Riemann zeta-function (Oxford, 1951).Google Scholar
  32. [32]
    H. Weyl, Bemerkungen zum Begriff des Differentialkoeffizienten gebrochener Ordnung,Vierteljahrsschr. naturf. Ges. Zürich,62 (1917), pp. 296–302.Google Scholar
  33. [33]
    E. T. Whittaker andG. N. Watson,A course of modern analysis, 4. edition (Cambridge, 1927).Google Scholar
  34. [34]
    M Zamansky, Sur la sommation des séries de Fourier dérivées,Comptes Rendus Acad. Sci. Paris,231 (1950), pp. 1118–1120.Google Scholar
  35. [35]
    A. Zygmund,Trigonometrical series, 2. edition (New York, 1952).Google Scholar

Copyright information

© Akadémiai Kiadó 1959

Authors and Affiliations

  • M. Mikolás

There are no affiliations available

Personalised recommendations