Journal of Chemical Ecology

, Volume 20, Issue 7, pp 1725–1734 | Cite as

Plant-natural enemy association in the tritrophic system,Cotesia rubecula-Pieris rapae-brassiceae (cruciferae): I. Sources of infochemicals

  • Nicky G. Agelopoulos
  • Michael A. Keller


The role of airborne infochemicals in host selection by the parasitoidCotesia rubecula (Marshal) (Hymenoptera: Braconidae) was examined in a wind tunnel. To elucidate the role of volatile chemicals in attractingC. rubecula to cabbage infested by the host [Pieris rapae L. (Lepidoptera: Pieridae)], the potential sources of volatiles related toP. rapae infestation on cabbage were tested individually. The responses of females to nonhost plant species, bean and geranium, as well as to frass of a nonhost lepidopteran were also examined.C. rubecula was attracted to cabbage previously infested byP. rapae and to frass and regurgitate ofP. rapae. No attraction was observed to larvae ofP. rapae alone. Females were also attracted to mechanically damaged cabbage, cabbage previously infested byPlutella xylostella L. (Lepidoptera: Plutellidae) (a nonhost lepidopteran herbivore), and cabbage previously infested by snails (a nonhost, noninsect herbivore). Intact cabbage, bean, and geranium plants elicited no attraction. A low frequency of attraction was observed to mechanically damaged bean and geranium. Attraction was also observed to frass ofP. xylostella. Volatiles from cabbage related to damage, and volatiles from frass and regurgitate of the host seem to play an important role in guidingC. rubecula to plants infested by its host.

Key Words

Cotesia rubecula Hymenoptera Braconidae Lepidoptera Pieridae Plutellidae Pieris rapae Brassica oleracea Plutella xylostella Phaselus vulgaris Geranium molle tritrophic interactions infochemicals volatiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agelopoulos, N.G., andKeller, M.A. 1994. Plant-natural enemy association in the tritrophic systemCotesia rubecula-Pieris rapae-Brassicaceae (Cruciferae). II. Preference ofC. rubecula for landing and searching.J. Chem. Ecol. 20:1735–1748.Google Scholar
  2. Biever, K.D. 1992. Distribution and occurrence ofCotesia rubecula (Hymenoptera: Braconidae), a parasite ofArtogeia rapae in Washington and Oregon.J. Econ. Entomol. 85:739–742.Google Scholar
  3. Cole, R.A. 1980. Volatile components produced during ontogeny of some cultivated Crucifers.J. Sci. Food Agric. 31:549–557.Google Scholar
  4. Dicke, M., andTakabayashi, J. 1991. Specificity of induced indirect defence of plants against herbivores.Redia 17(3)Appendix: 105–113.Google Scholar
  5. Dicke, M., Van Beek, T.A., Posthumus, M.A., Ben Dom, N., Van Bokhoven, K.L., andDe Groot, T.A.E. 1990a. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: Involvement of host plant in its production.J. Chem. Ecol. 16:381–398.Google Scholar
  6. Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J., andPosthumus, M.A. 1990b. Plant strategies of manipulating predator prey interactions through allelochemicals. Prospects of application in pest control.J. Chem. Ecol. 16:3091–3118.Google Scholar
  7. Eller, E.J., Tumlinson, J.H., andLewis, W.J. 1988. Beneficial behavior mediated by airborne semiochemicals: Source of volatiles mediating the host location flight behavior ofMicroplitis croceipes (Cresson) (Hymenoptera: Braconidae), a parasitoid ofHeliothis zea (Boddie) (Lepidoptera: Noctuidae).Environ. Entomol. 17:745–753.Google Scholar
  8. Elzen, G.W., Williams, H.L., Vinson, S.B., andPowell, J.E. 1987. Comparative flight behavior of parasitoidCampoletis sonorensis andMicropolitis croceipes.Entomol. Exp. Appl. 45:175–180.Google Scholar
  9. Elzen, G.W., Williams, H.L., andVinson, S.B. 1983. Responses by the parasitoidCampoletis sonorensis (Hymenoptera: Ichneumonidae) to chemicals (synomones) in plants: Implications for host habitat location.Environ. Entomol. 12:1873–1877.Google Scholar
  10. Kaiser, L., andCardé, R.T. 1992. In-flight orientation to volatiles from the plant-host complex inCotesia rubecula (Hym.: Braconidae): Increased sensitivity through olfactory experience.Physiol. Entomol. 17:62–67.Google Scholar
  11. Keller, M.A. 1990. Responses of the parasitoidCotesia rubecula to its hostPieris rapae in a flight tunnel.Entomol. Exp. Appl. 57:243–249.Google Scholar
  12. Lewis, W.J., andJones, R.L. 1971. Substance that stimulates host-seeking byMicroplitis croceipes (Hymenoptera: Braconidae) a parasite ofHeliothis species.Ann. Entomol. Soc. Am. 64:471–473.Google Scholar
  13. Loke, W.H., Ashley, T.R., andSailer, R.J. 1983. Influence of fall army worm,Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae and corn plant damage on host finding inApanteles magriniventris (Hymenoptera: Braconidae).Environ. Entomol. 12:911–915.Google Scholar
  14. Navasero, R.C., andElzen, G.W. 1989. Responses ofMicroplitis croceipes to host and non-host plants ofHeliothis virescens in a wind tunnel.Entomol. Exp. Appl. 53:57–63.Google Scholar
  15. Nealis, V. 1986. Responses to host kairomones and foraging behavior of the insect parasiteCotesia rubecula (Hymenoptera: Braconidae).Can. J. Zool. 64:2393–2398.Google Scholar
  16. Nealis, V. 1990. Factors affecting the rate of attack byCotesia rubecula (Hymenoptera: Braconidae).Ecol. Entomol. 15:163–168.Google Scholar
  17. Roland, J. 1990. Parsitoids aggregation: Chemical ecology and population dynamics, pp. 185–211,in M. Mackauer, L. Eller, and J. Roland (eds.), Critical Issues in Biological Control. Intercept Ltd, Andover, England.Google Scholar
  18. Shenefelt, R.D. 1972. Braconidae 4, Microgasterinae, Apanteles, p. 615,in J. Van Der Vecht and R. Shenefelt (eds.), Hymenopterum Catalogus, Vol. 7, W. Junk, The Hague, Netherlands.Google Scholar
  19. Silsbury, J.H. 1984. Comparison of the growth rates of dinitrogen fixing subterranean clovers swards with those assimilating nitrate ions.Plant Soil 80:201–213.Google Scholar
  20. Turlings, T.G.J., Tumlinson, J.H., andLewis, W.J. 1990. Exploitation of herbivore-induced plant odours by host-seeking parasitic wasps.Science 250:1251–1253.Google Scholar
  21. Turlings, T.G.J., Tumlinson, J.H., Eller, F.J., andLewis, W.J. 1991. Larval-damaged plants: Source of volatile synomones that guide the parasitoidCotesia marginivetris to the microhabitat of its hosts.Entomol. Exp. Appl. 58:75–82.Google Scholar
  22. Vet, L.E.M., andDicke, M. 1992. Ecology of infochemicals used by natural enemies in a tritrophic context.Annu. Rev. Entomol. 37:141–172.Google Scholar
  23. Vinson, S.B. 1984. How parasitoids locate their hosts: A case of insect espionage, pp. 325–348,in T. Lewis (ed.). Insect Communication. Academic Press, New York.Google Scholar
  24. Wallbank, B.E., andWheatley, G.A. 1976. Volatile constituents from cauliflower and other crucifers.Phytochemistry 15:763–766.Google Scholar
  25. Whitman, D.W., andEller, F.J. 1990. Parasitic wasps orient to green leaf volatiles.Chemoecology 1:69–75.Google Scholar
  26. Wilkinson, A.T.S. 1966.Apanteles rubecula Marsh. and other parasites ofPieris rapae in British Columbia.J. Econ. Entomol. 59:1012–1013.Google Scholar
  27. Wilkinson, D.S. 1945. The late D.S. Wilson's description ofApanteles rubecula Marsh.Trans. R. Entomol. Soc. London 95:35–226.Google Scholar
  28. Wilson, F. 1960. A review of the biological control of insects and weeds in Australia and Australian New Guinea. Tech. Commun. 1:CAB30–31.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Nicky G. Agelopoulos
    • 1
  • Michael A. Keller
    • 1
  1. 1.Department of Crop Protection Waite CampusUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations