Journal of Chemical Ecology

, Volume 20, Issue 6, pp 1355–1380 | Cite as

In search of allelopathy in the Florida scrub: The role of terpenoids

  • Nikolaus H. Fischer
  • G. Bruce Williamson
  • Jeffrey D. Weidenhamer
  • Donald R. Richardson


The hypothesis was tested that allelopathic agents released from fire-sensitive plants of the Florida scrub community deter the invasion of fireprone sandhill grasses. The structures of the constituents of four endemic scrub species,Conradina canescens, Calamintha ashei, Chrysoma pauciflosculosa, andCeratiola ericiodes, were established and their phytotoxic activity against two grasses of the sandhill was examined. Effects of the secondary metabolites from the above scrub species and their degradation products upon the germination and radicle growth of little bluestem (Schizachyrium scoparium) and green sprangletop (Leptochloa dubia), two native grasses of the Florida sandhill community, were determined. The studies included determination of the water solubility and release mechanism of terpenes and other allelopathic agents from the source plants and their aqueous transport to the target species. Some of the natural products were nontoxic until activated by light and/or oxidation after release from the source plant into the environment.

Key Words

Calamintha ashei (Labiatae) Conradina canescens (Labiatae) Chrysoma pauciflosculosa (Asteraceae) Ceratiola ericiodes (Empetraceae) terpenoids allelopathy mechanisms of release water transport activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asplund, R.O. 1968. Monoterpenes: Relationship between structure and inhibition of germination.Phytochemistry 7:1995–1997.Google Scholar
  2. Asplund, R.O. 1969. Some quantitative aspects of the phytotoxicity of monoterpenes.Weed Sci. 17:454–455.Google Scholar
  3. Blum, U., andDalton, B.R. 1985. Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings, grown in nutrient culture.J. Chem. Ecol. 10:1169–1191.Google Scholar
  4. Blum, U., andRebbeck, J. 1989. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture.J. Chem. Ecol. 15(3):917–928.Google Scholar
  5. Blum, U., andShafer, S.R. 1988. Microbial populations and phenolic acids in soil.Soil Biol. Biochem. 20:793–800.Google Scholar
  6. Boerner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem.Bot. Rev. 26:393–424.Google Scholar
  7. Budavari, S. (ed.). 1989. Merck Index, 11th ed. Merck & Co., Rahway, New Jersey.Google Scholar
  8. Christensen, N.L. 1988. Vegetation of the Southeastern coastal plain, pp. 317–363,in M.G. Barbour and W.D. Billings (eds.). North American Terrestrial Vegetation. Cambridge University Press, Cambridge, England.Google Scholar
  9. Davis, E.F. 1928. The toxic principle ofJuglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants.Am. J. Bot. 15:620 (abstract).Google Scholar
  10. Duke, S.O. 1991. Plant terpenoids as pesticides, pp. 269–296,in R.F. Keeler and A.T. Tu (eds.). Handbook of Natural Toxins, Vol. 6. Marcel Dekker, New York.Google Scholar
  11. Duke, S.O., andPaul, R.N. 1993. Development and fine structure of the glandular trichomes ofArtemisia annua. L.Int. J. Plant Sci. 154:107–118.Google Scholar
  12. Einhellig, F.A. 1987. Interaction among allelochemicals and other stress factors of the plant environment, pp. 343–357,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series Vol. 330. American Chemical Society, Washington, D.C.Google Scholar
  13. Einhellig, F.A., andEckrich, P. 1984. Interactions of temperature and ferulic acid stress on grain sorghum and soybeans.J. Chem. Ecol. 10:161–170.Google Scholar
  14. Eisner, T., McCormick, K.D., Sakaino, M., Eisner, M., Smedley, S.R., Aneshansley, D.J., Deyrup, M., Myers, R.L., andMeinwald, J. 1990. Chemical defense of a rare mint plant.Chemoecology 1:30–37.Google Scholar
  15. Eleuterius, L.N. 1979. Final report for the coastal field research laboratory. Gulf Coast Research Laboratory, Ocean Springs, Mississippi, pp. 101–110.Google Scholar
  16. Evenari, M. 1949. Germination inhibitors.Bot. Rev. 15:153–194.Google Scholar
  17. Fischer, N.H. 1986. The function of mono- and sesquiterpenes as plant germination and growth regulators, pp. 203–218,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley, New York.Google Scholar
  18. Fischer, N.H. 1991. Plant terpenoids as allelopathic agents, pp. 377–398,in J.B. Harborne and F.A. Tomas-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Oxford University Press, Oxford, U.K.Google Scholar
  19. Fischer, N.H., Tanrisever, N., andWilliamson, G.B. 1988. Allelopathy in the Florida scrub community as a model for natural herbicide actions, pp. 233–249,in H. Cutler (ed.). Natural Products: Potential in Agriculture. American Chemical Society Symposium Series 380. American Chemical Society, Washington, D.C.Google Scholar
  20. Fischer, N.H., Williamson, G.B., Tanrisever, N., de la Pena, A., Weidenhamer, J.D., Jordan, E.D., andRichardson, D.R. 1989. Allelopathic actions in the Florida scrub community.Biol. Plant. 31(6):471–478.Google Scholar
  21. Friedman, J. 1987. Allelopathy in desert ecosystems, pp. 53–68,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, D.C.Google Scholar
  22. Gershenzon, J. 1993. The cost of plant chemical defenses against herbivory: A biochemical perspective, pp. 105–173,in E.A. Bernays (ed.). Plant-Insect Interactions, Vol. 5. CRC Press, Boca Raton, Florida.Google Scholar
  23. Glass, A.D.M. 1973. Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake.Plant Physiol. 51:1037–1041.Google Scholar
  24. Glass, A.D.M. 1974. Influence of phenolic acids on ion uptake. III. Inhibition of potassium absorption.J. Exp. Bot. 25:1104–1113.Google Scholar
  25. Harborne, J.B. 1984. Phytochemical Methods, 2nd ed. Chapman and Hall, London.Google Scholar
  26. Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 3rd ed. Academic Press, London.Google Scholar
  27. Harper, J.L. 1975. Allelopathy.Q. Rev. Biol. 50:493–495.Google Scholar
  28. Harper, J.L. 1977. Population Biology of Plants. Academic Press, New York.Google Scholar
  29. Harper, J.R., andBalke, N.E. 1981. Characterization of the inhibition of K+ absorption in oat roots by salicylic acid.Plant Physiol. 68:1349–1353.Google Scholar
  30. Harper, R.M. 1914. Geography and vegetation of northern Florida.Annu. Rep. Fla. State Geol. Surv. 6:163–391.Google Scholar
  31. Harper, R.M. 1915. The natural resources of an area in central Florida.Annu. Rep. Fla. State Geol. Surv. 13:71–301.Google Scholar
  32. Hebb, E.A. 1982. Sand pine performs well in the Georgia-Carolina sandhills.South. J. Appl. For. 6:144–147.Google Scholar
  33. Hernandez, H. 1988. Search for allelochemicals in rice (Oryza sativa L.) and structure determination of external flavonoids fromCalamintha ashei. Ph.D. dissertation. Louisiana State University, Baton Rouge, Louisiana.Google Scholar
  34. Hernandez, H., andFischer, N.H. 1988. Unambiguous structure determination of a new flavonoid, 5,6,4′-trihydroxy-7,8,3′-trimethoxyflavone, by the use of INEPT NMR techniques.Spectrosc. Lett. 21:927–934.Google Scholar
  35. Hollis, C.A., Smith, J.E., andFisher, R.F. 1982. Allelopathic effects of common understory species on germination and growth of southern pines.For. Sci. 28(3):509–515.Google Scholar
  36. Horner, J.D., Gosz, J.R., andCates, R.G. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems.Am. Nat. 132(6):869–883.Google Scholar
  37. Jordan, E. 1990. Seasonal changes in concentrations of secondary compounds from foliage, litter and soils of the Florida scrub. PhD. dissertation. Louisiana State University, Baton Rouge, Louisiana.Google Scholar
  38. Kalisz, P.J., andStone, E.L. 1984. The longleaf pine islands of the Ocala National Forest, Florida: A soil study.Ecology 65:1743–1754.Google Scholar
  39. Kelsey, R.G., Reynolds, G.W., andRodriguez, E. 1984. The chemistry of biologically active constituents secreted and stored in plant glandular trichomes, pp. 187–241,in E. Rodriguez, P.L. Healy, and I. Metha (eds.). Biology and Chemistry of Plant Trichomes. Plenum Press, New York.Google Scholar
  40. Kobayashi, A., Morimoto, M., Shibata, Y., Yamashita, K., andNumata, M. 1980. C10-polyacetylenes as allelopathic substances in dominants in early stages of secondary succession.J. Chem. Ecol. 6:119–121.Google Scholar
  41. Laessle, A.M. 1958. The origin and successional relationship of sandhill vegetation and sand pine scrub.Ecol. Monogr. 28:361–387.Google Scholar
  42. Laessle, A.M. 1968. Relationships of sand pine scrub to former shorelines.J. Fla. Acad. Sci. 30:269–286.Google Scholar
  43. Langenheim, J.H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles.J. Chem. Ecol. 20:1223–1279.Google Scholar
  44. Macias, F.A., Fronczek, F.R., andFischer, N.H. 1989. Menthofurans fromCalamintha ashei and the absolute configuration of desacetylcalaminthone.Phytochemistry 28:79–82.Google Scholar
  45. McPherson, J.K., Chou, C.H., andMuller, C.H. 1971. Allelopathic constituents of the chaparral shrubAdenostoma fasciculatum.Phytochemistry 10:2925–2933.Google Scholar
  46. Menelaou, M.A. 1990. Structural and biosynthetic studies of natural products of the Asteraceae and Lamiaceae. PhD dissertation. Louisiana State University, Baton Rouge, Louisiana.Google Scholar
  47. Menelaou, M.A., Foroozesh, M., Williamson, G.B., Fronczek, F.R., Fischer, H.D., andFischer, N.H. 1992. Polyacetylenes fromChrysoma pauciflosculosa: Effects on Florida sandhill species.Phytochemistry 31:3769–3771.Google Scholar
  48. Menelaou, M.A., Weidenhamer, J.D., Williamson, G.B., Fronczek, F.R., Fischer, H.D., Quijano, L., andFischer, N.H. 1993. Diterpenes fromChrysoma pauciflosculosa: Effects on Florida sandhill species.Phytochemistry 34:97–105.Google Scholar
  49. Menges, E.S., andSalzman, V.T. 1992. Archbold Biological Station Plant List. Archbold Biological Station, Lake Placid, Florida, 79 pp.Google Scholar
  50. Metcalfe, C.R., andChalk, L. 1965. Anatomy of the Dicotyledons, Vol. II. Oxford on the Clarendon Press, London.Google Scholar
  51. Molisch, H. 1937. Der Einfluss einer Pflanze auf die Andere-Allelopathie. Fischer, Jena.Google Scholar
  52. Muller, C.H. 1965a. Inhibitory terpenes volatilized from Salvia shrubs.Bull. Torrey Bot. Club 92:38–45.Google Scholar
  53. Muller, C.H. 1965b. Volatile materials produced bySalvia leucophylla: Effects on seedling growth and soil bacteria.Bot. Gaz. 126:195–200.Google Scholar
  54. Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition.Bull. Torrey Bot. Club 93:332–351.Google Scholar
  55. Muller, C.H. 1969. Allelopathy as a factor in ecological process.Vegetacio 18:348–357.Google Scholar
  56. Muller, C.H., andChou, C.H. 1972. Phytoalexins: An ecological phase of phytochemistry, pp. 201–216,in J.B. Harborne (ed.). Phytochemical Ecology. Academic Press, London.Google Scholar
  57. Muller, C.H., anddel Moral, R. 1966. Soil toxicity induced by terpenes fromSalvia leucophylla.Bull. Torrey Bot. Club 93:332–351.Google Scholar
  58. Muller, C.H., Muller, W.H., andHaines, B.L. 1964. Volatile growth inhibitors produced by aromatic shrubs.Science 143:471–473.Google Scholar
  59. Nash, G.V. 1895. Notes on some Florida plants.Bull. Torrey Bot. Club 22:141–161.Google Scholar
  60. Picman, A.K. 1986. Biological activities of sesquiterpene lactones.Biochem. Syst. Ecol. 14:255–281.Google Scholar
  61. Putnam, A.R., andTang, C.S. (eds.). 1986a. The Science of Allelopathy. John Wiley, New York.Google Scholar
  62. Putnam, A.R., andTang, C.S. (eds.). 1986b. Allelopathy: State of the science, pp. 1–19,in A.R. Putnam and C.S. Tang (eds.). The Science of Allelopathy. John Wiley, New York.Google Scholar
  63. Rhode, H. 1922. Löslichkeit, Capillaraktivität und hämolytische Wirksamkeit bei Terpenderivaten.Biochem. Z. 130:481–496.Google Scholar
  64. Rice, E.L. 1984. Allelopathy, 2nd ed. Academic Press, Orlando, Florida.Google Scholar
  65. Richardson, D.R. 1977. Vegetation of the Atlantic Coastal Ridge of Palm Beach County, Florida.Fla. Sci. 40:281–330.Google Scholar
  66. Richardson, D.R. 1985. Allelopathic effects of species in the sand pine scrub of Florida. PhD dissertation. University of South Florida, Tampa, Florida.Google Scholar
  67. Richardson, D.R. 1988. Sand pine: An annotated bibliography.Fla. Sci. 52:65–93.Google Scholar
  68. Richardson, D.R., andWilliamson, G.B. 1988. Allelopathic effects of shrubs of the sand pine scrub on pines and grasses of the sandhills.For. Sci. 34:592–605.Google Scholar
  69. Seidell, A. 1940–41. Solubilities of Organic Compounds, 3rd ed, Vol. II. D. Van Nostrand, New York.Google Scholar
  70. Sigmund, W. 1924. Ueber die Einwirkung von Stoffwechsel-Endprodukten auf die Pflanzen.Biochem. Z. 146:389–419.Google Scholar
  71. Smyrl, T.G., andLeMaguer, M. 1980. Solubilities of terpenic essential oil components in aqueous solutions.J. Chem. Eng. Data 25:150–152.Google Scholar
  72. Spring, O. 1991. Trichome microsampling of sesquiterpene lactones for the use of systematic studies, pp. 319–345,in N.H. Fischer, M.B. Isman, and H.A. Stafford, (eds.). Modern Phytochemical Methods. Plenum Press, New York.Google Scholar
  73. Stevens, K.L., andMerrill, G.B. 1985. Sesquiterpene lactones and allelochemicals fromCentaurea species, pp. 83–98,in A.C. Thompson (ed.). The Chemistry of Allelopathy: Biochemical Interactions Among Plants. American Chemical Society Symposium Series 268. American Chemical Society, Washington, D.C.Google Scholar
  74. Tang, C.S. 1986. Continuous trapping techniques for the study of allelochemicals from higher plants, pp. 113–131,in A.R. Putnam and C.-S. Tang (eds.). The Science of Allelopathy. Wiley Intersciences, New York.Google Scholar
  75. Tanrisever, N., Fronczek, F.R., Fischer, N.H., andWilliamson, G.B. 1987. Ceratiolin and other flavonoids fromCeratiola ericoides.Phytochemistry 26:175–179.Google Scholar
  76. Tanrisever, N., Fischer, N.H., andWilliamson, G.B. 1988. Menthofurans fromCalamintha ashei: Effects onSchizachyrium scoparium andLactuca sativa.Phytochemistry. 27:2523–2526.Google Scholar
  77. Thompson, A.C. (ed.). 1985. The Chemistry of Allelopathy. Biochemical Interactions among Plants. American Chemical Society Symposium Series 268. American Chemical Society, Washington, D.C.Google Scholar
  78. Tukey, H.B., Jr. 1969. Implications of allelopathy in agricultural plant science.Bot. Rev. 35:1–16.Google Scholar
  79. Van der Kloet, S.P. 1986. Plant List of the Archbold Biological Station. Archbold Biological Station, Lake Placid, Florida. 74 pp.Google Scholar
  80. Veno, P.A. 1976. Successional relationships of five Florida plant communities.Ecology 57:498–508.Google Scholar
  81. Waller, G.R. (ed.). 1987. Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, D.C.Google Scholar
  82. Weast, R.C. (ed.). 1976. CRC Handbook of Physics and Chemistry, 57th ed. CRC Press, Cleveland, Ohio.Google Scholar
  83. Weast, R.C. (ed.) 1989. CRC Handbook of Physics and Chemistry, 70th ed. CRC Press, Boca Raton, Florida.Google Scholar
  84. Webber, H.J. 1935. The Florida scrub, a fire-fighting association.Am. J. Bot. 22:344–361.Google Scholar
  85. Weidenhamer, J.D., andRomeo, J.T. 1989. Allelopathic properties ofPolygonella myriophylla: Field evidence and bioassays.J. Chem. Ecol. 15:1957–1969.Google Scholar
  86. Weidenhamer, J.D., Morton, T.C., andRomeo, J.T. 1987. Solution volume and seed number: Overlooked factors in allelopathic bioassays.J. Chem. Ecol. 13(6):1481–1491.Google Scholar
  87. Weidenhamer, J.D., Hartnett, D.C., andRomeo, J.T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants.J. Appl. Ecol. 26:613–624.Google Scholar
  88. Weidenhamer, J.D., Macias, F.A., Fischer, N.H., andWilliamson, G.B. 1993. Just how insoluble are monoterpenes?J. Chem. Ecol. 19:1827–1835.Google Scholar
  89. Weidenhamer, J.D., Menelaou, M.A., Macias, F.A., Fischer, N.H., Richardson, D.R., andWilliamson, G.B. 1994. Allelopathic potential of menthofuran monoterpenes fromCalamintha ashei. J. Chem. Ecol. Accepted.Google Scholar
  90. Whittaker, R.H. 1971. The chemistry of communities, pp. 10–18,in U.S. National Committee for IBP, (eds.). Biochemical Interactions Among Plants. National Academy of Science, Washington, D.C.Google Scholar
  91. Williamson, G.B. 1990. Allelopathy, Koch's postulates, and the neck riddle, pp. 143–162,in J.B. Grace and D. Tilman (eds.). Perspectives on Plant Competition. Academic Press, New York.Google Scholar
  92. Williamson, G.B., andBlack, E.M. 1981. High temperatures of forest fires under pines as a selective advantage over oaks.Nature 293:643–644.Google Scholar
  93. Williamson, G.B., andRichardson, D.R. 1988. Bioassays for allelopathy: Measuring treatment responses with independent controls.J. Chem. Ecol. 14:181–187.Google Scholar
  94. Williamson, G.B., andWeidenhamer, J.D. 1990. Bacterial degradation of juglone: Evidence against allelopathy?J. Chem. Ecol. 16(5):1739–1741.Google Scholar
  95. Williamson, G.B., Fischer, N.H., Richardson, D.R., andde la Pena, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub,Conradina canescens.J. Chem. Ecol. 15:1567–1577.Google Scholar
  96. Williamson, G.B., Obee, E.M., andWeidenhamer, J.D. 1992a. Inhibition ofSchizachyrium scoparium (Poaceae) by the allelochemical hydrocinnamic acid.J. Chem. Ecol. 18(11):2095–2105.Google Scholar
  97. Williamson, G.B., Richardson, D.R., andFischer, N.H. 1992b. Allelopathic mechanisms in fire-prone communities, pp. 58–75,in S.J.H. Rizvi and V. Rizvi (eds.). Allelopathy: Basic and Applied Aspects. Chapman and Hall, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Nikolaus H. Fischer
    • 1
  • G. Bruce Williamson
    • 2
  • Jeffrey D. Weidenhamer
    • 3
  • Donald R. Richardson
    • 2
  1. 1.Department of ChemistryLouisiana State UniversityBaton Rouge
  2. 2.Department of BotanyLouisiana State UniversityBaton Rouge
  3. 3.Department of ChemistryAshland UniversityAshland

Personalised recommendations