Journal of Chemical Ecology

, Volume 20, Issue 6, pp 1223–1280 | Cite as

Higher plant terpenoids: A phytocentric overview of their ecological roles

  • Jean H. Langenheim


Characteristics of higher plant terpenoids that result in mediation of numerous kinds of ecological interactions are discussed as a framework for this Symposium on Chemical Ecology of Terpenoids. However, the role of terpenoid mixtures, either constitutive or induced, their intraspecific qualitative and quantitative compositional variation, and their dosage-dependent effects are emphasized in subsequent discussions. It is suggested that little previous attention to these characteristics may have contributed to terpenoids having been misrepresented in some chemical defense theories. Selected phytocentric examples of terpenoid interactions are presented: (1) defense against generalist and specialist insect and mammalian herbivores, (2) defense against insect-vectored fungi and potentially pathogenic endophytic fungi, (3) attraction of entomophages and pollinators, (4) allelopathic effects that inhibit seed germination and soil bacteria, and (5) interaction with reactive troposphere gases. The results are integrated by discussing how these terpenoids may be contributing factors in determining some properties of terrestrial plant communities and ecosystems. A terrestrial phytocentric approach is necessitated due to the magnitude and scope of terpenoid interactions. This presentation has a more broadly based ecological perspective than the several excellent recent reviews of the ecological chemistry of terpenoids.

Key Words

Higher plant terpenoids quantitative variation of mixtures plant defense plant pollination allelopathy tritrophic interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arey, J., Winer, A.M., Atkinson, R., Aschmann, S.M., Long, W.D., Morrison, C.L., andOlszyk, D.M. 1991. Terpenes emitted from agricultural species found in California's Central Valley.J. Geophys. Res. 96:9329–9336.Google Scholar
  2. Arrhenius, S.P., andLangenheim, J.H. 1983. Inhibitory effects ofHymenaea andCopaifera leaf resins on the leaf fungusPestalotia subcuticularis.Biochem. Syst. Ecol. 11:361–366.Google Scholar
  3. Asplund, R.O. 1968. Monoterpenes: Relationship between structure and inhibition of germination.Phytochemistry 7:1995–1997.Google Scholar
  4. Asplund, R.O. 1969. Some qualitative aspects of the phytotoxicity of monoterpenes.Weed Sci. 17:454–455.Google Scholar
  5. Barbosa, P., andLetourneau, D.K. (eds.). 1988. Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.Google Scholar
  6. Barbosa, P., andSaunders, J.A. 1985. Plant allelochemicals: Linkage between herbivores and their natural enemies, pp. 107–137,in G.A. Cooper-Driver, T. Swain, and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, Vol. 19. Plenum Press, New York.Google Scholar
  7. Bell, A.A., Stipanovic, R.D., Elzen, G.W., andWilliams, H.J., Jr. 1987. Structural and genetic variation of natural pesticides in pigment glands of cotton (Gossypium), pp. 477–490,in G.R. Waller (ed.). Allelochemicals, Role in Agriculture and Forestry, ACS Symposium Series No. 330. American Chemical Society, Washington, DC.Google Scholar
  8. Bell, C.M., andHarestad, A.S. 1987. Efficacy of pine oil as repellent to wildlife.J. Chem. Ecol. 13:1409–1417.Google Scholar
  9. Berenbaum, M.R. 1985. Interactions among allelochemicals in plants, pp. 139–169,in G.A. Cooper-Driver, T. Swain and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, Vol. 19. Plenum Press, New York.Google Scholar
  10. Berenbaum, M.R. 1988. Allelochemicals in insect-microbe-plant interactions: Agents provocateurs in the coevolutionary arms race, pp. 97–124,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.Google Scholar
  11. Berenbaum, M.R. andZangerl. 1992. Genetics of secondary metabolism and herbivore resistance in plants, pp. 415–438,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. 2, Ecological and Evolutionary Processes. Academic Press, New York.Google Scholar
  12. Bergström, G. 1987. On the role of volatile signals in the evolution and speciation of plants and insects: Why do flowers smell and why do they smell differently? pp. 321–327,in V. Labegrie, G. Fabius, and D. Lachaise (eds.). Insects-Plants. W. Junk, Dordrecht.Google Scholar
  13. Bergström, G. 1991. Chemical ecology of terpenoid and other fragrances of angiosperm flowers, pp. 287–296,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.Google Scholar
  14. Bergström, J., andBergström, G. 1989. Floral scents ofBartsia alpina (Scrophulariaceae): chemical composition and variation between individual plants.Nord. J. Bot. 9:1–3.Google Scholar
  15. Berryman, A.A. 1986. Forest Insects. Principles and Practice of Population Management. Plenum Press, New York.Google Scholar
  16. Berryman, A.A. (ed.). 1988. Dynamics of Forest Insect Populations. Plenum, New York.Google Scholar
  17. Berryman, A.A. 1989. Adaptive pathways in scolytid-fungus associations, pp. 145–159,in N. Wilding, N.M. Collins, P.M. Hammond, and J.F. Webber (eds.). Insect-Fungus Interactions. Academic Press, New York.Google Scholar
  18. Berryman, A.A., Raffa, K.F., Millstein, J.A., andStenseth, N.C. 1989. Interactive dynamics of bark beetle aggregation and conifer defense rates.Oikos 56:256–263.Google Scholar
  19. Bjorkman, C., Larsson, S., andGraf, R. 1991. Effects of nitrogen fertilization on pine needle chemistry and sawfly performance.Oecologia 86:202–209.Google Scholar
  20. Bowers, M.D. 1991. Iridoid glycosides, pp. 297–325,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites. Vol. 1, The Chemical Participants. Academic Press, New York.Google Scholar
  21. Bowers, M.D., andPuttick, G.M. 1986. Fate of ingested iridoid glycosides in lepidopteran herbivores,J. Chem. Ecol. 12:167–178.Google Scholar
  22. Bowers, M.D., andPuttick, G.M. 1988. Response of generalist and specialist insects to qualitative allelochemical variation.J. Chem. Ecol. 14:319–334.Google Scholar
  23. Bradow, J.M., andConnick, W.J., Jr. 1990. Volatile seed germination inhibitors from plant residues.J. Chem. Ecol. 16:645–666.Google Scholar
  24. Brandner, T.A., Peterson, R.O., andRisenhoover, K.L. 1990. Balsam fir on Isle Royale: Effects of moose herbivory and population density.Ecology 71:155–164.Google Scholar
  25. Bridges, J.R. 1987. Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle.Phytopathology 77:83–85.Google Scholar
  26. Bruin, J., Dicke, M., andSabelis, M.W. 1992. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics.Experientia 48:525–529.Google Scholar
  27. Bryant, J.P., Chapin, F.S., III, andKlein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory.Oikos 40:357–368.Google Scholar
  28. Bryant, J.P., Reichardt, P.B., Claussen, T.P., Provenza, F.O., andKuropat, P.J. 1992. Woody-plant mammal interactions, pp. 343–370,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  29. Button, D.K. 1984. Evidence for a terpene-based food chain in the Gulf of Alaska.Appl. Environ. Microbiol. 48:1004–1011.Google Scholar
  30. Byers, J.A., Lanne, B.S., andLofquist, J. 1989. Host tree unsuitability recognized by pine shoot beetles in flight.Experientia 45:489–492.Google Scholar
  31. Camors, F.B., Jr., andPayne, T.L. 1971. Response ofHeydonia unica (Hymenoptera: Pteromalidae) toDendroctonus frontalis (Coleoptera: Scolytidae) pheromones and a host-tree terpene.Ann. Entomol. Soc. Am. 65:31–33.Google Scholar
  32. Carroll, G.C. 1986. The biology of endophytism in plants with particular reference to woody plants, pp. 205–222,in N. Fokkema and J. van den Heuvel (eds.). Microbiology of the Phyllosphere. Cambridge University Press, London.Google Scholar
  33. Carroll, G.C. 1988. Fungal endophytes in stem and leaves: From latent pathogens to mutualistic symbiont.Ecology 69:2–9.Google Scholar
  34. Cates, R.G., andRhoades, D.F. 1977. Patterns in the production of antiherbivore chemical defenses in plant communities.Biochem. Syst. Ecol. 5:185–193.Google Scholar
  35. Cates, R.G., andRedak, R. 1988. Variation in terpene chemistry of Douglas-fir and its relationship to western spruce budworm success, pp. 317–344,in K. Spencer (ed.). Chemical Mediation of Coevolution. Academic Press, New York.Google Scholar
  36. Cates, R.G., andZou, J. 1990. Douglas fir (Pseudotsuga menzeisii) population variation in terpene chemistry and its role in budworm dynamics, pp. 169–182,in A. Watt, S. Leather, M. Hunter and N. Kidd (eds.). Population Dynamics of Forest Insects. Intercept, London.Google Scholar
  37. Cates, R.G., Redak, R.A., andHenderson, C.B. 1983. Patterns in defensive natural products chemistry: Douglas fir and western spruce budworm interactions, pp. 3–20,in P.A. Hedin (ed.). Plant Resistance to Insects, ACS Symposium Series 208. American Chemical Society, Washington, DC.Google Scholar
  38. Chararas, C., Revolon, C., Feinberg, M., andDucauze, C. 1982. Preference of certain scolytidae for different conifers. A statistical approach.J. Chem. Ecol. 8:1093–1109.Google Scholar
  39. Christiansen, E. 1985.Ips/Ceratocystis infection of Norway spruce: What is deadly dosage?Z. Angew. Entomol. 99:6–11.Google Scholar
  40. Cluff, L.K., Welch, B.L., Pederson, J.C., andBrotherson, J.D. 1982. Concentration of monoterpenoids in the rumen ingesta of wild mule deer.J. Range Manage. 35:192–194.Google Scholar
  41. Cobb, F.W., Jr., Krstic, M., Zavarin, E., andBarber, H.W. 1968. Inhibitory effects of volatile oleoresin components ofFomes annosus and fourCeratocystis species.Phytopathology 58:1327–1335.Google Scholar
  42. Coley, P.D., Bryant, J.B., andChapin, F.S. 1985. Resource availability and plant herbivore defense.Science 230:895–899.Google Scholar
  43. Cook, S.P., andHain, F.P. 1988. Toxicity by host monoterpenes toDendroctonus frontalis andIps calligraphus.J. Entomol. Sci. 23:287–290.Google Scholar
  44. Crankshaw, D.R., andLangenheim, J.H. 1981. Variation in terpenes and phenolics through leaf development inHymenaea and its possible significance to herbivory.Biochem. Syst. Ecol. 9:115–124.Google Scholar
  45. Crawley, M.J. 1989. The relative importance of vertebrate and invertebrate herbivores in plant population dynamics, pp. 45–71,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. I. CRC Press, Boca Raton, Florida.Google Scholar
  46. Croteau, R. 1987. Biosynthesis and catabolism of monoterpenoids.Chem. Rev. 87:929–954.Google Scholar
  47. Croteau, R., andJohnson, M.A. 1985. Biosynthesis of terpenoid wood extractives, pp. 379–439,in T. Higuci (ed.). Biosynthesis and Biodegradation of Wood Components. Academic Press, New York.Google Scholar
  48. Crutzen, P.J., andAndreae, M.O. 1985. Atmospheric chemistry, pp. 75–113,in T.F. Malone and J.G. Roederer (eds.). Global Change. Cambridge University Press, England.Google Scholar
  49. Dell, B., andMcComb, A.J. 1978. Plant resins—their formation, secretion and possible functions, pp. 277–316,in H.W. Woolhouse (ed.). Advances in Botanical Research VI. Academic Press, New York.Google Scholar
  50. Di Castri, F. 1981. Mediterranean-type shrublands of the world, pp. 1–52,in F. de Castri, D.W. Goodall, and R.L. Specht (eds.). Ecosystems of the World II. Elsevier, Amsterdam.Google Scholar
  51. Dicke, M., Sabelis, M.W., Takabayashi, J., Bruin, J., andPosthumus, M.A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control.J. Chem. Ecol. 16:3091–3118.Google Scholar
  52. Dixon, W.N., andPayne, T.L. 1980. Attraction of entomophagous and associate insects of the southern pine beetle to beetle- and host-tree-produced volatiles.J. G. Entomol. Soc. 15:378–389.Google Scholar
  53. Dobson, H. 1993. Floral volatiles in insect biology, pp. 47–81,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. V. CRC Press, Boca Raton, Florida.Google Scholar
  54. Dobson, H., Bergström, G., andGroth, I. 1990. Fragrance chemistry differences between flower parts ofRosa rugosa (Rosaceae).Isr. J. Bot. 39:143–156.Google Scholar
  55. Dodson, C.H., Dressler, R.L., Hills, H.G., Adams, R.M., andWilliams, N.H. 1969. Biologically active compounds in orchid fragrances.Science 164:1243–1249.Google Scholar
  56. Einhellig, E.A. 1985. Interactions among allelochemicals and other stress factors of the plant environment, pp. 343–357,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium. Series 330. American Chemical Society, Washington, DC.Google Scholar
  57. Eisner, T., Johnessee, J.S., Carvell, J., Hendry, L.B., andMeinwald, J. 1974. Defensive use by an insect of a plant resin.Science 184:996–999.PubMedGoogle Scholar
  58. Elliott, S., andLoudon, A. 1987. Effects of monoterpene odors on food selection by red deer calves.J. Chem. Ecol. 13:1343–1350.Google Scholar
  59. Elzen, G.W., Williams, H.J., andVinson, S.B. 1983. Response by the parasitoidCampoleptis sonorensis (Hymenoptera: Ichneumonidae) to chemicals (synomones) in plants: Implications for host habitat location.Environ. Entomol. 12:1872–1876.Google Scholar
  60. Elzen, G.W., Williams, H.J., andVinson, S.B. 1984. Isolation and identification of cotton synomones mediating searching behavior by parasitoidCampoletis sonorensis.J. Chem. Ecol. 10:1251–1264.Google Scholar
  61. Espinosa-Garcia, F.J., andLangenheim, J.H. 1991a. Effect of some leaf essential oil phenotypes in coastal redwood on the growth of several fungi with endophytic stages.Biochem. Syst. Ecol. 19:629–642.Google Scholar
  62. Espinosa-Garcia, F.J., andLangenheim, J.H. 1991b. Effects of sabinene and γ-terpinene from coastal redwood leaves acting singly or in mixtures on the growth of some of their fungus endophytes.Biochem. Syst. Ecol. 19:643–650.Google Scholar
  63. Espinosa-Garcia, F.J., Saldivar-Garcia, P., andLangenheim, J.H. 1993. Dose-dependent effects in vitro of essential oils on growth of two endophytic fungi in coastal redwood leaves.Biochem. Syst. Ecol. 21:185–194.Google Scholar
  64. Fajer, E.D., Bowers, M.D., andBazzaz, F.A. 1992. The effects of nutrients and enriched CO2 environments on production of carbon-based allelochemicals inPlantago: A test of the carbon/nutrient balance hypothesis.Am. Nat. 140:707–723.Google Scholar
  65. Feeny, P. 1976. Plant apparency and chemical defense, pp. 3–19,in J.W. Wallace and R.C. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum Press, New York.Google Scholar
  66. Feeny, P. 1992. The evolution of chemical ecology: contributions from the study of herbivorous insects, pp. 1–44,in G.A. Rosenthal and M.R. Berbenbaum (eds.). Herbivores. Their Interactions with Secondary Plant Metabolites, Vol. II, Ecological and Evolutionary Processes. Academic Press, New York.Google Scholar
  67. Fischer, N.H. 1991. Plant terpenoids as allelopathic agents, pp. 377–399,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.Google Scholar
  68. Fischer, N.H., Tanrisever, N., andWilliamson, G.B. 1988. Allelopathy in the Florida scrub community as a model for natural herbicide actions, pp. 233–249,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, DC.Google Scholar
  69. Fischer, N.H., Williamson, G.B., Weidenhamer, J.D., andRichardson, D.R. 1994. In Search of allelopathy in the Florida scrub. The role of terpenoids.J. Chem. Ecol. 20:1355–1380.Google Scholar
  70. Foley, W.J., Lassak, E.V., andBrophy, J. 1987. Digestion and absorption ofEucalyptus essential oils in greater glider and brush tail possum.J. Chem. Ecol. 13:2115–2130.Google Scholar
  71. Fox, L.R. 1988. Diffuse coevolution within complex communities.Ecology 69:906–907.Google Scholar
  72. Friedman, J. 1988. Allelopathy in desert ecosystems, pp. 53–68in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series 330. American Chemical Society, Washington, DC.Google Scholar
  73. Fritz, R.S., andSimms, E.L. 1992. Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, Illinois.Google Scholar
  74. Gambliel, H.A., andCates, R.G. 1994. Terpene changes due to maturation and canopy level in Douglas-fir (Pseudotsuga menziesii) fresh needle oil.Biochem. Syst. Ecol. 22: In press.Google Scholar
  75. Gershenzon, J. 1993. The cost of plant chemical defenses against herbivory: A biochemical perspective, pp. 105–173,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. V. CRC Press, Boca Raton, Florida.Google Scholar
  76. Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants.J. Chem. Ecol. 20:1281–1328.Google Scholar
  77. Gershenzon, J., andCroteau, R. 1990. Regulation of monoterpene biosynthesis in higher plants, pp. 99–160,in G.H.N. Towers and H.A. Stafford (eds.). Biochemistry of the Mevalonic Acid Pathway to Terpenoids. Plenum Press, New York.Google Scholar
  78. Gershenzon, J., andCroteau, R. 1991. Terpenoids, pp. 165–219,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores, Their Interactions with Secondary Metabolites, Vol. 1, The Chemical Participants. Academic Press, New York.Google Scholar
  79. Gershenzon, J., Lincoln, D.E., andLangenheim, J.H. 1978. The effects of moisture stress on monoterpenoid yield and composition inSatureja douglasii.Biochem. Syst. Ecol. 6:33–44.Google Scholar
  80. Gollob, L. 1980. Monoterpene composition in bark beetle-resistant loblolly pine.Naturwissenschaften 67:409–410.Google Scholar
  81. Gonzales de Parra, M., Anaya, A.L., Espinosa, F., Jimenez, F., andCastillo, R. 1981. Allelopathic potential ofPoqueria trinervia (Compositae) and piquerols A and B.J. Chem. Ecol. 7:209–215.Google Scholar
  82. Greamy, P.D., andHagen, K.S. 1981. Prey selection, pp. 121–135in D.A. Nordlund, R.L. Jones, and W.J. Lewis (eds.). Semiochemicals: Their Role in Pest Control. John Wiley, New York.Google Scholar
  83. Grosjean, D., Williams, E.L., III, andSeinfeld, J.H. 1992. Atmospheric oxidation of selected terpenes and related carbonyls: Gas-phase carbonyl products.Environ. Sci. Technol. 26:1526–1533.Google Scholar
  84. Gunasena, G.H., Vinson, S.B., Williams, H.J., andStipanovic, R.D. 1988. Effects of caryophyllene and caryophyllene oxide and their interaction with gossypol on growth and development ofHeliothis virescens (F.) (Lepidopteran; Noctuidae).J. Econ. Entomol. 81:93–97.Google Scholar
  85. Hall, G.D., andLangenheim, J.H. 1986. Temporal changes in the leaf monoterpenes ofSequoia sempervirens.Biochem. Syst. Ecol. 14:61–69.Google Scholar
  86. Hall, G.D., andLangenheim, J.H. 1987. Geographic variation in leaf monoterpenes ofSequoia sempervirens.Biochem. Syst. Ecol. 15:31–43.Google Scholar
  87. Halligan, J.P. 1975. Toxic terpenes fromArtemisia californica.Ecology 56:999–1003.Google Scholar
  88. Harborne, J.B. 1988. Introduction to Ecological Biochemistry, 3rd ed.. Academic Press, London.Google Scholar
  89. Harborne, J.B., 1991a. Recent advances in the ecological chemistry of plant terpenoids, pp. 399–426,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.Google Scholar
  90. Harborne, J.B. 1991b. The chemical basis of plant defense, pp. 46–59,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, London.Google Scholar
  91. Harper, J.L. 1977. Population Biology of Plants. Academic Press, New York.Google Scholar
  92. Hedin, P.A., Lindig, O.H., Sikorowski, P.P., andWyatt, M. 1978. Supressants of the gut bacteria in the boll weevil from the cotton plant.J. Econ. Entomol. 71:394–396.Google Scholar
  93. Herms, D.A., andMattson, W.J. 1992. The dilemma of plants: To grow or to defend.Q. Rev. Biol. 67:283–335.Google Scholar
  94. Hinejima, M. Hobson, K.R., Otsuka, T., Wood, D.L., andKubo, I. 1992. Antimicrobial terpenes from oleoresin of ponderosa pine treePinus ponderosa: A defense mechanism against microbial invasion.J. Chem. Ecol. 18:1809–1818.Google Scholar
  95. Hintikka, W. 1970. Selective effect of terpenes on wood-decomposing hymenomycetes.Karstenia 11:28–32.Google Scholar
  96. Hodges, J.D., Elam, W.W., Watson, W.F., andNebekur, T.E. 1979. Oleoresin characteristics and susceptibility for four southern pine beetle attacks.Can. Entomol. 11:889–896.Google Scholar
  97. Howard, J.J., Coxin, J., Jr., andWiemer, D.F. 1988. Toxicity of terpenoid deterrents to the leaf-cutting antAtta cephalotes and its mutualistic fungus.J. Chem. Ecol. 13:59–69.Google Scholar
  98. Howard, J.J., Green, T.P., andWiemer, D.F. 1989. Comparative deterrency of two terpenoids to two genera of attine ants.J. Chem. Ecol. 15:2275–2288.Google Scholar
  99. Howes, F.N. 1949. Vegetable Gums and Resins. Chronica Botanica Co., Waltham, Massachusetts.Google Scholar
  100. Hubbell, S.P., andHoward, J.J. 1984. Chemical leaf repellency to an attine ant: Seasonal distribution among potential host plant species.Ecology 65:1067–1076.Google Scholar
  101. Hubbell, S.P., Wiemer, D.F., andAdejore, A. 1983. Antifungal terpenoid defends a neotropical tree (Hymenaea) against attack by fungus-growing ants.Oecologia 60:321–327.Google Scholar
  102. Ikeda, T., Matsumura, F., andBenjamin, D.M. 1977. Mechanism of feeding discrimination between matured and juvenile foliage by two species of pine sawflies.J. Chem. Ecol. 3:677–694.Google Scholar
  103. Jones, C.G., andFirn, R.D., 1991. On evolution of plant secondary chemical diversity.Phil. Trans. R. Soc. London Ser. B 333:273–280.Google Scholar
  104. Jones, C.G., andLawton, J.H. 1991. Plant chemistry and insect species richness of British umbellifers.J. Animal Ecol. 60:767–777.Google Scholar
  105. Karban, R. 1992. Plant variation: Its effects on populations of herbivorous insects, pp. 195–215,in R.J. Fritz and E.L. Simms. Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, Illinois.Google Scholar
  106. Katz, D.A., Sneh, R., andFriedman, J. 1987. The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the role of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes.Plant Soil 98:53–66.Google Scholar
  107. Kepner, R.E., Ellison, B.O., Breckenridge, M., Connolly, G., Madden, S.C., andMuller, C.J. 1974. Volatile terpenes in California bay foliage. Changes in composition during maturation.J. Agric. Food Chem. 22:781–784.Google Scholar
  108. Klein, D.R. 1981. The problems of overpopulation of deer in North America, pp. 119–127,in P.A. Jewell and S. Holt (eds.). Problems in Management of Locally Abundant Wild Mammals. Academic Press, New York.Google Scholar
  109. Klimetzek, D., Kohler, J., Vité, J.P., andKohnle, U. 1987. Dosage response to ethanol mediates host selection by secondary bark beetles.Naturwissenschaften 73:270–271.Google Scholar
  110. Knudson, J.T., Tollsten, L., andBergström, G. 1993. Floral scents—a checklist of volatile compounds isolated by headspace techniques.Phytochemistry 33:253–280.Google Scholar
  111. Kotzias, D., Sparta, C., andDuane, C. 1992. Distribution of optical isomers of monoterpenes (±)-α-pinene in the leaf oil of conifers.Naturwissenschaften 92:24–26.Google Scholar
  112. Krischik, V.A. 1991. Specific or generalized plant defense: Reciprocal interactions between herbivores and pathogens, pp. 309–340,in P. Barbosa, V.A. Krischik, and C.G. Jones (eds.). Microbial Mediation of Plant-Herbivore Interactions. John Wiley & sons, New York.Google Scholar
  113. Krischik, V. A., andDenno, R.F. 1983. Individual, population and geographic patterns in plant defense, pp. 463–572,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  114. Kubo, I., andHanke, F.J. 1985. Multifaceted chemically based resistance in plants, pp. 171–194,in G.A. Cooper-Driver, T. Swain, and E.E. Conn (eds.). Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, Vol. 19. Plenum Press, New York.Google Scholar
  115. Langenheim, J.H. 1969. Amber. A botanical enquiry.Science 163:1157–1169.PubMedGoogle Scholar
  116. Langenheim, J.H. 1984. Role of plant secondary compounds in wet tropical ecosystems, pp. 189–208,in E. Media, H. Mooney, and C. Vasquez-Yanes (eds.). Physiological Ecology of Plants in the Wet Tropics. W. Junk, The Hague.Google Scholar
  117. Langenheim, J.H. 1990. Plant resins.Am. Sci. 78:16–24.Google Scholar
  118. Langenheim, J.H., andHall, G.D. 1983. Sesquiterpene deterrence of a leaf-tying lepidopteranStenoma ferrocanella onHymenaea stigonocarpa in Central Brazil.Biochem. Syst. Ecol. 11:29–36.Google Scholar
  119. Langenheim, J.H., andStubblebine, W.H. 1983. Variation in resin composition between parent tree and progeny inHymenaea: Implications for herbivory in the humid tropics.Biochem. Syst. Ecol. 11:97–106.Google Scholar
  120. Langenheim, J.H., Foster, C.E. Lincoln, D.E., andStubblebine, W.H. 1978. Implications of variation in resin composition among organs, tissues and populations in the tropical legumeHymenaea.Biochem. Syst. Ecol. 6:299–313.Google Scholar
  121. Langenheim, J.H., Foster, C.E., andMcGinley, R.M. 1980. Inhibitory effects of different quantitative compositions ofHymenaea leaf resins on a generalist herbivoreSpodoptera exigua.Biochem. Syst. Ecol. 8:358–396.Google Scholar
  122. Langenheim, J.H., Convis, C.L., Macedo, C.A., andStubblebine, W.H. 1986a.Hymenaea andCopaifera leaf sesquiterpenes in relation to lepidopteran herbivory.Biochem. Syst. Ecol. 14:41–49.Google Scholar
  123. Langenheim, J.H., Macedo, C.A., Ross, M.K., andStubblebine, W.H. 1986b. Leaf development in the tropical leguminous treeCopaifera in relation to microlepidopteran herbivory.Biochem. Syst. Ecol. 14:51–59.Google Scholar
  124. Larsson, S., Bjorkman, C., andGraf, R. 1986. Responses ofNeodiprion sertifer (Hym. Diprionidae) larvae to variation in needle resin concentration in Scots pine.Oecologia 70:77–84.Google Scholar
  125. Lerdau, M.T. 1991. Plant function and biogenic terpene emissions, pp. 121–134,in T. Sharkey, E. Holland, and H. Mooney (eds.). Trace Gas Emissions by Plants. Academic Press, New York.Google Scholar
  126. Lerdau, M.T., andPenuelas, J. 1993. Terpenes in plants: Links between the biosphere and the atmosphere.Mund. Cient 13:60–64.Google Scholar
  127. Lerdau, M., Monson, R., andLitvak, M. 1994. Supply and demand in plant chemical defense: Monoterpenes and the growth-differentiation balance hypothesis.Trends Ecol. Evol. 9:58–61.Google Scholar
  128. Letourneau, D.K. 1988. Conceptual framework of three-trophic level interactions, pp. 1–9,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.Google Scholar
  129. Lincoln, D.E., andCouvet, D. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint.Oecologia 78:112–114.Google Scholar
  130. Lincoln, D.E., andLangenheim, J.H. 1976. Geographic pattern of monoterpenoid composition inSatureja douglasii.Biochem. Syst. Ecol. 4:237–248.Google Scholar
  131. Lincoln, D.E., andLangenheim, J.H. 1978. Effect of light and temperature on monoterpenoid yield and composition inSatureja douglasii.Biochem. Syst. Ecol. 6:21–32.Google Scholar
  132. Lincoln, D.E., andLangenheim, J.H. 1979. Variation ofSatureja douglasii monoterpenoids in relation to light intensity and herbivory.Biochem. Syst. Ecol. 7:289–298.Google Scholar
  133. Linhart, Y.B. 1991. Disease, parasitism and herbivory: Multidimensional challenges in plant evolution.Trends Ecol. Evol. 12:392–396.Google Scholar
  134. Linhart, Y.B., Snyder, M.A., andHubeck, S.A. 1989. The influence of animals on genetic variability within ponderosa pine stands, illustrated by the effects of Abert's squirrel and porcupine, pp. 141–148,in A. Teck et al. (eds.). Multiresource management of ponderosa pine forests. USDA Forest Service General Technical Report RM-185.Google Scholar
  135. Longhurst, W.M., Oh, H.K., Jones, M.B., andKepner, R.E. 1968. A basis for the palatability of deer forage plants.North Am. Wildl. Nat. Resour. Conf. Trans. 33:181–189.Google Scholar
  136. Lopez, A., Fontan, M., Barthomeuf, O., andMinga, A. 1988. Présentation de l'expérience Atila (Action des terpenes et isoprene dans l'atmosphere) effectuée en forêt tempéré au sud ouest de la France (Forêt des Landes).Atmos. Environ. 22:1881–1894.Google Scholar
  137. Luis, J.G. 1991. Chemistry, biogenesis and chemotaxonomy of the diterpenoids ofSalvia, pp. 63–82,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.Google Scholar
  138. McBride, J.R. 1974. Plant succession in the Berkeley Hills, California.Madroño 22:317–329.Google Scholar
  139. McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores. Their interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  140. Macedo, C.A., andLangenheim, J.H. 1989a. A further investigation of leaf sesquiterpene variation in relation to herbivory in two Brazilian populations ofCopaifera langsdorfii.Biochem. Syst. Ecol. 17:207–216.Google Scholar
  141. Macedo, C.A., andLangenheim, J.H. 1986b. Microlepidopteran herbivory in relation to leaf sesquiterpenes inCopaifera langsdorfii adult trees and seedling progeny in a Brazilian woodland.Biochem. Syst. Ecol. 17:217–224.Google Scholar
  142. Macedo, C.A., andLangenheim, J.H. 1989c. Intra- and interplant leaf sesquiterpene variability inCopaifera langsdorfii: Relation to microlepidopteran herbivory.Biochem. Syst. Ecol. 17:551–557.Google Scholar
  143. Marquis, R.J. 1992. The selective impact of herbivores, pp. 301–325,in R.S. Fritz and E.L. Simms (eds.). Plant Resistance to Herbivores and Pathogens. University of Chicago Press, Chicago, Illinois.Google Scholar
  144. Martin, S.S., Langenheim, J.H. andZavarin, E. 1974. Quantitative variation in leaf pocket composition inHymenaea courbaril.Biochem. Syst. Ecol. 3:760–787.Google Scholar
  145. Martin, S.S., Langenheim, J.H., andZavarin, E. 1976. Quantitative leaf resin composition inHymenaea (Leguminosae).Biochem. Syst. Ecol. 4:181–191.Google Scholar
  146. Meisner, J., Navon, A., Zur, M., andAscher, J.R.S. 1977. The response ofSpodoptera littoralis larvae to gossypol incorporated in an artificial diet.Environ. Entomol. 6:243–244.Google Scholar
  147. Mihaliak, C.A. 1985. Growth pattern and carbon allocation to volatile leaf terpenes under nitrogen limiting conditions inHeterotheca subaxillaris (Asteraceae).Oecologia 66:423–426.Google Scholar
  148. Mihalaik, C.A., andLincoln, D.E. 1989. Changes in leaf mono-and sesquiterpene metabolism with nitrate availability and leaf age inHeterotheca subaxillaris.J. Chem. Ecol. 15:1579–1588.Google Scholar
  149. Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition.Bull. Torrey Bot. Club 93:332–351.Google Scholar
  150. Muller, C.H. 1969. Phytotoxins as plant habitat variables.Recent Adv. Phytochem. 3:105–121.Google Scholar
  151. Muller, C.H., anddel Moral, R. 1966. Soil toxicity induced by terpenes fromSalvia leucophylla.Bull. Torrey Bot. Club 93:130–137.Google Scholar
  152. Muller, C.H., Muller, W.H., andHaines, B.L. 1964. Volatile growth inhibitors produced by shrubs.Science 143:471–473.Google Scholar
  153. Muzika, L.M., Pregitzer, K.S., andHanover, J.W. 1989. Changes in terpene production following nitrogen fertilization of giant fir (Abies grandis (Dougl.) Lindl.) seedlings.Oecologia 80:485–489.Google Scholar
  154. Myers, J.H. 1993. Population outbreaks in forest lepidoptera.Am. Sci. 81:240–251.Google Scholar
  155. Nagy, J.G. andRegelin, W.L. 1977. Influence of plant volatile oils on food selection by animals, pp. 225–230,in T.J. Petrie (ed.). 13th International Congress of Game Biologists. Wildlife Management Institute, Washington, D.C.Google Scholar
  156. Nagy, J.G., andTengerdy, R.P. 1968. Antibacterial action of essential oils ofArtemesia as an ecological factor.Appl. Microbiol. 16:441–444.PubMedGoogle Scholar
  157. Oh, H.K., Sakai, T., Jones, M.B., andLonghurst, W.M. 1967. The effect of various essential oils isolated from Douglas-fir needles upon sheep and deer rumen microbial activity.Appl. Microbiol. 15:777–784.PubMedGoogle Scholar
  158. Ohigashi, H., Wagner, M.R., Matsumura, F., andBenjamin, D.M. 1981. Chemical basis of differential feeding behavior of the larch sawfly,Pristiphora erichsonii (Hartwig).J. Chem. Ecol. 7:599–614.Google Scholar
  159. Paine, T.D., andStephen, F.M. 1987. Response of loblolly pine to different inoculum doses ofCeratocystis minor, a blue stain fungus associated withDendroctonus frontalis.Can. J. Bot. 65:2093–2095.Google Scholar
  160. Phelan, P.C., andStinner, B.R. 1992. Microbial mediation of plant-herbivore ecology, pp. 279–316,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores. Their Interaction with Secondary Plant Metabolites, Vol. II, Ecological and Evolutionary Processes. Academic Press, New York.Google Scholar
  161. Picman, A.K. 1986. Biological activities of sesquiterpene lactones.Biochem. Syst. Ecol. 14:255–281.Google Scholar
  162. Picman, J., andPicman, A.K. 1984. Autotoxicity inParthenium hysterophorus and its possible role in control of germination.Biochem. Syst. Ecol. 12:287–292.Google Scholar
  163. Pimentel, D., andBellotti, A.C. 1976. Parasite-host population systems and genetic stability.Am. Nat. 110:877–888.Google Scholar
  164. Poinar, G.O. 1992. Life in Amber. Stanford University Press, Stanford, California.Google Scholar
  165. Price, P.W. 1992. The resource-based organizations of communities.Biotropica 24:273–282.Google Scholar
  166. Price, P.W., Bouton, C.E., Gross, P., McPherson, B.A., Thompson, J.N., andWeis, A.E. 1980. Interactions among three trophic levels of plants on interactions between insect herbivores and natural enemies.Annu. Rev. Ecol. Syst. 11:41–65.Google Scholar
  167. Putman, R.J., Edwards, P.J., Mann, J.C.E., How, R.C., andHill, S.D. 1989. Vegetational and faunal changes in an area of heavily grazed woodland following relief of grazing.Biol. Conserv. 47:13–32.Google Scholar
  168. Puttick, G.M., andBowers, M.D. 1988. Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.J. Chem. Ecol. 14:335–351.Google Scholar
  169. Raffa, K.F. 1991. Induced defenses in conifer-bark beetle systems, pp. 245–276,in D.W. Tallamy and M.J. Raupp (eds.). Phytochemical Induction by Herbivores. Academic Press, New York.Google Scholar
  170. Raffa, K.F., andBerryman, A.A. 1982. Accumulation of monoterpenes and associated volatiles following fungal inoculation of grand fir with a fungus transmitted by the fir engraverScolytus ventralis (Coleoptera: Scolytidae).Can. Entomol. 114:797–810.Google Scholar
  171. Raffa, K.F., andBerryman, A.A. 1983. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle.Can. Entomol. 115:723–734.Google Scholar
  172. Raffa, K.F., andBerryman, A.A. 1987. Interacting selective pressures in conifer-bark beetle systems: A basis for reciprocal adaptations?Am. Nat. 129:234–262.Google Scholar
  173. Raffa, K.F., andKlepzig, K.D. 1992. Tree defense mechanisms against fungi associated with insects, pp. 354–390,in R.A. Blanchette and A.C. Biggs (eds.). Defense Mechanisms of Woody Plants against Fungi. Springer-Verlag, Berlin.Google Scholar
  174. Raffa, K.F., Berryman, A.A., Simasko, J., Teal, W., andWong, B.L. 1985. Effects of grand fir monoterpenes on the fir engraver beetle (Coleoptera: Scolytidae) and its symbiotic fungi.Environ. Entomol. 4:552–556.Google Scholar
  175. Rane, K.K., andTattar, T.A. 1987. Pathogenicity of blue-stain fungi associated withDendroctonas terebrans.Plant Dis. 71:879–883.Google Scholar
  176. Rasmussen, R.A., andKahlil, M.A.K. 1988. Isoprene over the Amazon Basin.J. Geophys. Res. 93:1417–1421.Google Scholar
  177. Reichardt, P.B., Bryant, J.P., Clausen, T.P., andWieland, G.D. 1984. Defense of winterdormant Alaska paper birch against snowshoe hare.Oecologia 65:58–69.Google Scholar
  178. Reichardt, P.B., Bryant, J.P., Mattes, B.R., Clausen, T.P., Chapin, F.S., III, andMeyer, M. 1990a. Winter chemical defense of Alaskan balsam poplar against snowshoe hares.J. Chem. Ecol. 16:1941–1959.Google Scholar
  179. Reichardt, P.B., Bryant, J.P., Anderson, B.J., Phillips, D., Claussen, T.P., Meyer, M., andFrisby, K. 1990b. Germancrone defends Labrador tea from browsing by snowshoe hares.J. Chem. Ecol. 16:1961–1970.Google Scholar
  180. Reichardt, P.B., Chapin, F.S., III, Bryant, S.B., Mattes, B.R., andClausen, T.P. 1991. Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: Potential importance of metabolic turnover.Oecologia 88:401–406.Google Scholar
  181. Rhoades, D.G. 1983. Herbivore population dynamics and plant chemistry, pp. 155–220,in R.F. Denno and M.S. McClure (eds.). Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  182. Rhoades, D.G., andCates, R.G. 1976. Toward a general theory of plant herbivore chemistry, pp. 168–213,in J.W. Wallace and R.L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum Press, New York.Google Scholar
  183. Rice, R.L., Lincoln, D.E., andLangenheim, J.H. 1978. Palatability of monoterpenoid compositional types ofSatureja douglasii to a generalist molluscan herbivoreAriolimax dolichophallus.Biochem. Syst. Ecol. 6:45–53.Google Scholar
  184. Richardson, D.R., andWilliamson, G.B. 1988. Allelopathic effects of shrubs of sand pine scrub on pines and grasses of the sand hills.For. Sci. 34:592–605.Google Scholar
  185. Ross, J.D., andSombero, C. 1991. Environmental control of essential oil production in Mediterranean plants, pp. 64–94,in J.B. Harborne and F.A. Tomes-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant Terpenoids. Clarendon Press, Oxford.Google Scholar
  186. Rothschild, M. 1985. British aposematic Lepidoptera, pp. 9–62,in J.H. Heath and A.M. Emmet (eds.). The Moths and Butterflies of Great Britain and Ireland. Harley Books, Essex, England.Google Scholar
  187. Schuck, H.J. 1982. Monoterpenes and resistance of conifers to fungi, pp. 169–175,in H.M. Heybrock, B.M. Stephan, and K. Wissenberg, Resistance to Diseases and Pests in Forest Trees. Pudoc, Wageningen.Google Scholar
  188. Schuh, B.A., andBenjamin, D.M. 1984. The chemical feeding ecology ofNeodiprion hubiosus Schedl,N. rugifrons Midd andN. lecontei (Fitch) on Jack pine (Pinus banksiana Lamb).J. Chem. Ecol. 10:1071–1079.Google Scholar
  189. Schultz, J.C. 1983. Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies, pp. 37–54,in P.A. Hedin (ed.). Plant Resistance to Insects, ACS Symposium Series 208. American Chemical Society, Washington, D.C.Google Scholar
  190. Schwartz, C.C., Regelin, W.L., andNagy, J.G. 1980. Deer preference for juniper forage and volatile oil-treated foods.J. Wildl. Manage. 44:114–120.Google Scholar
  191. Scott, A.L., andTaylor, T.N. 1983. Plant/animal interactions during the upper Carboniferous.Bot. Rev. 49:259–307.Google Scholar
  192. Simms, E.L., andFritz, R.S. 1990. The ecology and evolution of host plant resistance to insects.Trends Ecol. Evol. 5:356–360.Google Scholar
  193. Simoneit, T., Brendt, R.T., Grimalt, J.O., Wang, T.G., Cox, R.E., Hatcher, P.G., andNissenbaum, A. 1986. Cyclic terpenoids of contemporary resinous plant detritus and fossil woods, ambers and coals, pp. 877–889,in Advances in Organic Chemistry, Organic Chemistry 10. Pergamon Press, Oxford.Google Scholar
  194. Sinclair, A.R.E., Jagia, M.K., andAnderson, R.J. 1988. Camphor from juvenile white spruce as an antifeedant for snowshoe hares.J. Chem. Ecol. 14:1505–1541.Google Scholar
  195. Singh, I.D., andWeaver, J.B., Jr. 1972. Growth and infestation on boll weevels on normal glanded, glandless and high gossypol strains of cotton.J. Econ. Entomol. 65:821–824.Google Scholar
  196. Stephen, F.M., andPaine, T.D. 1985. Seasonal patterns of host tree resistance to fungal associates of the southern pine beetle.Z. Angew. Entomol. 99:113–122.Google Scholar
  197. Stephenson, A.G. 1982. Iridoid glycosides in the nectar ofCatalpa speciosia are unpalatable to nectar thieves.J. Chem. Ecol. 8:1025–1034.Google Scholar
  198. Stewart, G.H., andBurrows, L.E. 1989. The impact of white-tailed deerOdocoileus virginianus on the regeneration in the coastal forests of Stewart Island, New Zealand.Biol. Conserv. 49:275–293.Google Scholar
  199. Stipanovic, R.D., Williams, H.J., andSmith, L.A. 1986. Cotton terpenoid inhibition ofHeliothis virescens development, pp. 79–94,in M.A. Green and P.A. Hedin (eds.). Natural Resistance of Plants to Pests—Role of Allelochemicals, American Chemical Society Symposium Series 296. American Chemical Society, Washington, D.C.Google Scholar
  200. Strobel, G.A., andSugawara, F. 1986. The pathogenicity ofCeratocystis montia to lodgepole pine.Can. J. Bot. 64:113–116.Google Scholar
  201. Stubblefield, S.P., Taylor, T.N., andBeck, C.B. 1985. Studies of Paleozoic fungi. V. Wood-decaying fungi inCallixylon newburyi from the Upper Devonian.Am. J. Bot. 72:1765–1774.Google Scholar
  202. Sturgeon, K.B. 1979. Monoterpene variation in ponderosa pine xylem related to western pine predation.Evolution 33:803–814.Google Scholar
  203. Sturgeon, K.B., andMitton, J.B. 1982. Evolution of bark beetle communities, pp. 350–384,in J.B. Mitton and K.B. Sturgeon (eds.). Bark Beetles in North American Conifers: A System for Study of Evolutionary Biology. University of Texas Press, Austin.Google Scholar
  204. Sturgeon, K.B., andMitton, J.B. 1986. Biochemical diversity of ponderosa pine and predation by bark beetles (Coleoptera: Scolytidae).J. Econ. Entomol. 79:1064–1068.Google Scholar
  205. Synder, M.A. 1992. Selective herbivory by Abert's squirrel mediated by chemical variability in ponderosa pine.Ecology 78:1730–1741.Google Scholar
  206. Snyder, M.A. 1993. Interactions between Abert's squirrel and ponderosa pine: The relationship between selective herbivory and host plant fitness.Am. Nat. 141:866–879.Google Scholar
  207. Takabayashi, J., andDicke, M. 1993. Volatile allelochemicals that mediate interactions in a tritrophic system consisting of predatory mites, spider mites and plants, pp. 280–295,in H. Kawanabee, J.E. Cohen, and K. Iwasaki (eds.). Mutalism and Community Organization. Oxford University Press, New York.Google Scholar
  208. Takabayashi, J., Dicke, M., andPosthumus, M.A. 1991. Induction of indirect defense against spider-mite in uninfested lima bean leaves.Phytochemistry 30:1459–1462.Google Scholar
  209. Takabayashi, J., Dicke, M., andPosthumus, M.A. 1994. Voatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors.J. Chem. Ecol. 20:1329–1354.Google Scholar
  210. Thompson, J.N. 1988. Coevolution and alternative hypotheses on insect/plant interactions.Ecology 69:893–895.Google Scholar
  211. Tilghman, N.G. 1989. Impacts of white-tailed deer on forest regeneration in northwestern Pennsylvania.J. Wildl. Manage. 53:524–532.Google Scholar
  212. Tuomi, J. 1992. Toward integration of plant defense theories.Trends Ecol. Evol. 7:365–367.Google Scholar
  213. Turlings, T.C.J., andTumlinson, J.H. 1992. Systemic release of chemical signals by herbivore-injured corn.Proc. Natl. Acad. Sci. U.S.A. 89:8399–8402.PubMedGoogle Scholar
  214. Turlings, T.C.J., Tumlinson, J.H., Heath, P.R., Praveaux, A.T., andDoolittle, R.E. 1991. Isolation and identification of alleochemicals that attract the larval parasitoid,Cotasia marginiventra (Cresson) to the microhabitat of one of its hosts.J. Chem. Ecol. 17:2235–2251.Google Scholar
  215. Turlings, T.C.J., McCall, P.J., Alborn, H.T., andTumlinson, J.H. 1993. An elicitor in caterpillar oral secretions that induces corn seedling to emit chemical signals attractive to parasite wasps.J. Chem. Ecol. 19:411–425.Google Scholar
  216. Vandemeer, J.H. 1980. Indirect mutualism: Variation on a theme by Stephen Levine.Am. Nat. 116:441–442.Google Scholar
  217. Veblen, T.T., Mermoz, M., Martin, C., andRamilo, E. 1989. Effects of exotic deer on forest regeneration and composition in northern Patagonia.J. Appl. Ecol. 26:711–724.Google Scholar
  218. Verhoeff, K. 1974. Latent infections by fungi.Annu. Rev. Phytopathol. 12:99–110.Google Scholar
  219. Vitousek, P.M., andMattson, P.A. 1992. Tropical forests and trace gases: Potential interactions between tropical biology and the atmospheric sciences.Biotropica 24:233–239.Google Scholar
  220. Von Rudloff, E. 1975. Volatile oil analysis in chemosystematic studies of North American conifers.Biochem. Syst. Ecol. 2:131–168.Google Scholar
  221. Von Rudloff, E., andRehfelt, G. 1980. Chemosystematic studies in the genusPseudotsuga. IV Inheritance and geographic variation in the leaf oil terpenes of Douglas-fir from the Pacific Northwest.Can. J. Bot. 58:546–556.Google Scholar
  222. Wagner, M.R., Benjamin, D.M., Clancy, K.M., andSchuh, B.A. 1983. Influence of diterpene resin acids on feeding and growth of larch sawflyPristiphora erichsonii (Harby).J. Chem. Ecol. 9:119–127.Google Scholar
  223. Wagner, M.R., Clancy, K.M., andTinus, R. 1990. Seasonal patterns in the allelochemicals ofPseudotsuga menziesii, Picea engelmannii andAbies concolor.Biochem. Syst. Ecol. 18:215–220.Google Scholar
  224. Weidenhamer, J.D., Hartnett, D.C., andRomeo, J.T. 1989. Density-dependent phytotoxicity: Distinguishing resource competition and allelopathic interference in plants.J. Appl. Ecol. 26:613–624.Google Scholar
  225. Weidenhamer, J.D., Macias, F.N., Fischer, N.H., andWilliamson, G.B. 1993. Just how soluble are monoterpenes?J. Chem. Ecol. 19:1799–1807.Google Scholar
  226. Welch, B.L., McArthur, D.E., andDavis, J.N. 1981. Differential preference for wintering mule deer for accessions of big sagebrush and for black sagebrush.J. Range Manage. 34:409–411.Google Scholar
  227. Welch, B.L., Pederson, J.C., andRodriguez, R.L. 1989. Monoterpenoid content of sage grouse ingesta.J. Chem. Ecol. 15:961–969.Google Scholar
  228. White, C.S. 1994. Monoterpenes: their effects on ecosystem nutrient cycling.J. Chem. Ecol. 20:1381–1406.Google Scholar
  229. White, S.M., Welch, B.L., andFlinders, J.T. 1982. Monoterpenoid content of pygmy rabbit stomach ingesta.J. Range Manage. 35:107–109.Google Scholar
  230. Whitman, D.W. 1988. Allelochemical interactions among plants, herbivores and their predators, pp. 11–64,in P. Barbosa and D.K. Letourneau (eds.).Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.Google Scholar
  231. Whitney, G.C. 1984. Fifty years of change in the arboreal vegetation of Heart's Content, and old-growth hemlock-white pine-northern hardwood stand.Ecology 65:403–408.Google Scholar
  232. Williams, G.B., Fischer, N.H., Richardson, D.R., andde la Pena, A. 1989. Chemical inhibition of fire-prone grasses by fire-sensitive shrub,Conradina canescens.J. Chem. Ecol. 15:1567–1577.Google Scholar
  233. Williams, H.J., Elzen, G.W., andVinson, S.B. 1988. Parasitoid-host-plant interactions emphasizing cotton (Gossypium), pp. 171–200,in P. Barbosa and D.K. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. John Wiley & Sons, New York.Google Scholar
  234. Winer, D.M., Arey, J., Atkinson, R., Aschmann, S.H., Long, W.D., Morrison, C.L., andOlszyk, D.M. 1992. Emission rates of organics from vegetation in California's Central Valley.Atmos. Environ. 26A:2647–2659.Google Scholar
  235. Wood, D.L. 1982. The role of pheromones, kairomones and allomones on the host selection and colonization behavior of bark beetles.Annu. Rev. Entomol. 27:411–446.Google Scholar
  236. Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs #6, 1359 pp.Google Scholar
  237. Zavarin, E., andSnajberk, K. 1975.Pseudotsuga menziesii.Biochem. Syst. Ecol. 2:121–129.Google Scholar
  238. Zavarin, E., Snajberk, K., andCritchfield, W.B. 1977. Terpenoid chemosystematic studies ofAbies grandis.Biochem. Syst. Ecol. 15:81–93.Google Scholar
  239. Zavarin, E., Snajberk, K., andCool, L. 1990. Monoterpene variability ofPinus monticola wood.Biochem. Syst. Ecol. 18:117–124.Google Scholar
  240. Zimmermann, P.R., Greenberg, J.P., andWestberg, C.E. 1988. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer.J. Geophys. Res. 93:1407–1416.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jean H. Langenheim
    • 1
  1. 1.Department of Biology, Sinsheimer LaboratoiresUniversity of CaliforniaSanta Cruz

Personalised recommendations