Journal of Chemical Ecology

, Volume 20, Issue 5, pp 1075–1093 | Cite as

Composition of larval secretion ofChrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant

  • M. Hilker
  • S. Schulz


The defensive secretion ofChrysomela lapponica larvae, which is produced by nine pairs of exocrine dorsal glands, has been chemically analyzed. TheC. lapponica larvae were kept in the laboratory on leaves of either birch (Betula pendula), alder (Alnus glutinosa), or willow (Salix fragilis). Larvae developed normally on birch and willow, whereas those on alder died within a few days. GC-MS analyses of the secretion of larvae on birch and willow revealed that the composition of this secretion differs distinctly from the known ones of several otherChrysomela species feeding exclusively on Salicaceae. In the exocrine secretion of larvae on birch, 69 compounds were identified, which included the main components isobutyric acid, 2-methylbutyric acid, and esters of the two. Several of the esters have not been reported previously from nature. The alcoholic components of the esters may be hydrolysis products ofBetula glycosides. Most components of the secretion of larvae feeding on birch were also found in the secretion of larvae feeding on willow. In addition, major amounts of benzoic acid and salicylalcohol were present in the secretion of the larvae feeding on willow.C. lapponica obviously acquires salicylalcohol by hydrolysis of salicin from willow leaves. However, in contrast to otherChrysomela species,C. lapponica larvae oxidize only traces of salicylalcohol to salicylaldehyde. The repellent activity of single authentic compounds of the secretion of larvae feeding on birch and willow, respectively, was tested in laboratory bioassays with ants (Myrmica sabuleti). Biosynthetic pathways to some identified compounds are suggested and discussed under evolutionary and functional aspects.

Key Words

Coleoptera Chrysomelidae Chrysomela lapponica larval secretion defense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich, J.R., Carroll, S.P., Oliver, J.E., Lusby, W.R., Rudman, A.A., andWaters, R.M. 1990. Exocrine secretions of scentless plant bugs:Jadera, Boisea andNiesthrea species (Hemiptera: Heteroptera: Rhopalidae).Biochem. Syst. Ecol. 18:369–376.Google Scholar
  2. Blum, M.S. 1987. Biosynthesis of arthropod exocrine compounds.Annu. Rev. Entomol. 32:381–413.Google Scholar
  3. Blum, M.S., Brand, J.M., Wallace, J.B., andFales, H.F. 1972. Chemical characterization of the defensive secretion of a chrysomelid larva.Life Sci. 11:525–531.Google Scholar
  4. Brown, W.M. 1956. The new world species ofChrysomela L. (Coleoptera: Chrysomelidae).Can. Entomol. 88(Suppl. 3):3–54.Google Scholar
  5. Dettner, K., andSchwinger, G. 1987. Chemical defense in the larvae of the leaf beetleGonioctena viminalis L. (Coleoptera: Chrysomelidae).Experientia 43:458–460.Google Scholar
  6. Dillon, M.P., Hayes, M.A., Simpson, T.I., andSweeney, J.B. 1991. The synthesis of isotopically labelledN-acetylcysteamine thio esters utilizing a baker's yeast reduction in deuterium oxide.Bioorg. Med. Chem. Lett. 1:223–226.Google Scholar
  7. Garb, G. 1915. The eversible glands of a chrysomelid larva,Melasoma lapponica.J. Entomol. Zool. 7:88–97.Google Scholar
  8. Hegnauer, R. 1964. Chemotaxonomie der Pflanzen, Vol. 3, Betulaceae. Birkhäuser Verlag, Basel. pp. 255–268.Google Scholar
  9. Hegnauer, R. 1973. Chemotaxonomie der Pflanzen, Vol. 6, Salicaceae. Birkhäuser Verlag, Basel. pp. 241–258.Google Scholar
  10. Hennig, W. 1938. Übersicht über die wichtigsten deutschen Chrysomelinen.Arb. Physiol. Ang. Entomol. Berlin-Dahlem 5:85–136.Google Scholar
  11. Hölldobler, B., andWilson, E.O. 1990. The Ants. Springer Verlag, Berlin. 732 pp.Google Scholar
  12. Kaiser, R. 1986. New volatile constituents ofJasminum sambac (L.) Aiton, pp. 669–684 in B.M. Lawrence, B.D. Mookherjee, and B.J. Willis (eds.). Flavors and Fragrances: A World Perspective. Proceedings 10th International Congress of Essential Oils, Fragrances and Flavors, Washington, D.C. Elsevier Science Publishers, Amsterdam.Google Scholar
  13. Kitching, W., Lewis, J.A., Fletcher, M.T., Drew, R.A.I., Moore, C.J., andFrancke, W. 1986. Spiroacetals in rectal gland secretions of Australian fruit fly species. J. Chem. Soc. Commun. 1986:853–854.Google Scholar
  14. Klischies, M., andZenk, M.H. 1978. Stereochemistry of C-methylation in the biosynthesis of rhododendrin inAlnus undBetula.Phytochemistry 17:1281–1284.Google Scholar
  15. König, W.A., Gehrcke, B., Icheln, D., Evers, P., Dönnecke, J., andWang, W. 1992. New, selectively substituted cyclodextrins as stationary phases for the analysis of chiral constituents of essential oils.J. High Resolut. Chromatogr. 14:367–372.Google Scholar
  16. Lorenz, M., Boland, W., andDettner, K. 1993. Biosynthese von Iridodialen in Wehrdrüsen von Blattkäferlarven (Chrysomelinae).Angew. Chem. 32:912–914.Google Scholar
  17. Lorenz, R.J. 1988. Grundbegriffe der Biometrie, 2nd ed. Fischer Verlag, Stuttgart. 241 pp.Google Scholar
  18. Matsuda, K., andSugawara, F. 1980. Defensive secretion of chrysomelid larvaeChrysomela vigintipunctata costella (Marseul),C. populi L. andGastrolina depressa Baly (Coleoptera: Chrysomelidae).Appl. Entomol. Zool. 15:316–320.Google Scholar
  19. Meinwald, J., Jones, T.H., Eisner, T., andHicks, K. 1977. New methyl-cyclopentanoid terpenes from the larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora). Proc. Natl. Acad. Sci. U.S.A. 74:2189–2193.PubMedGoogle Scholar
  20. Merkx, Y.M., andBaerheim Svendsen, A. 1990. Glycosidically bound volatile aliphatic and aromatic alcoholis—a common feature in the vegetable kingdom?J. Essent. Oil Res. 2:207–208.Google Scholar
  21. Mohr, K.-H. 1966. Chrysomelidae, pp. 95–280,in H. Freude, K.W. Harde, and G.A. Lohse (eds.). Die Käfer Mitteleuropas. Bd. 9. Goecke and Evers, Krefeld.Google Scholar
  22. Nishida, R., Tan, K.H., Takahashi, S., andFukami, H. 1990. Volatile components of male rectal glands of the melon fly,Dacus cucurbitae Coquillet (Diptera: Tephritidae).Appl. Entomol. Zool. 25:105–112.Google Scholar
  23. Palo, R.T. 1984. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores.J. Chem. Ecol. 10:499–520.Google Scholar
  24. Pasteels, J.M., Braekman, J.-C., andDaloze, D. 1982. Chemical defense in chrysomelid larvae and adults.Tetrahedron 38:1891–1897.Google Scholar
  25. Pasteels, J.M., Rowell-Rahier, M., Braekman, J.-C., andDupont, A. 1983. Salicin from host plant as precursor of salicylaldehyde in defensive secretion of chrysomeline larvae.Physiol. Entomol. 8:307–314.Google Scholar
  26. Pasteels, J.M., Rowell-Rahier, M., Braekman, J.-C., andDaloze, D. 1984. Chemical defences in leaf beetles and their larvae: The ecological, evolutionary and taxonomic significance.Biochem. Syst. Ecol. 12:395–406.Google Scholar
  27. Pasteels, J.M., Rowell-Rahier, M., Brackman, J.-C., Daloze, D., andDuffey, S. 1989. Evolution of exocrine chemical defense in leaf beetles (Coleoptera, Chrysomelidae).Experientia 45:295–300.Google Scholar
  28. Pasteels, J.M., Braekman, J.-C., andDaloze, D. 1988a. Chemical defense in the Chrysomelidae, pp. 233–252,in P. Jolivet, E. Petitpierre, and T.H. Hsiao (eds.), Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht.Google Scholar
  29. Pasteels, J.M., Rowell-Rahier, M., andRaupp, M.J. 1988b. Plant-derived defense in chrysomelid beetles, pp. 235–272,in P. Barbosa and D. Letourneau (eds.). Novel Aspects of Insect-Plant Interactions. Wiley, London.Google Scholar
  30. Pasteels, J.M., Duffey, S., andRowell-Rahier, M. 1990. Toxins in chrysomelid beetles. Possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals.J. Chem. Ecol. 16:211–222.Google Scholar
  31. Schulz, S., Francke, W., andEdgar, J. 1988. Volatile compounds from androconial organs of danaine and ithomiine butterflies.Z. Naturforsch 43c:99–104.Google Scholar
  32. Schulz, S., Boppré, M., andVane-Wright, R.I. 1993. Specific mixtures of secretions from male scent organs of African milkweed butterflies (Danainae).Phil. Trans. R. Soc. Lond. Ser. B 342:161–181.Google Scholar
  33. Seeno, T.N., andWilcox, J.A. 1982. Leaf beetle genera (Coleoptera: Chrysomelidae).Entomography 1:1–221.Google Scholar
  34. Seligman, I.M., andDoy, F.A. 1973. Biosynthesis of defensive secretions inPapilio aegeus.Insect Biochem. 3:205–215.Google Scholar
  35. Stahl-Biskup, E., Intert, F., Holthuijzen, J., Stengele, M., andSchulz, G. 1993. Glycosidically bound volatiles—a review 1986–1991.Flav. Frag. J. 8:61–80.Google Scholar
  36. Sugawara, F., Matsuda, K., Kobayashi, A., andYamashita, K. 1979. Defensive secretion of chrysomelid larvaeLinaeidea aenea Linné andPlagiodera versicolora distincta Baly.J. Chem. Ecol. 5:929–934.Google Scholar
  37. Thieme, H. 1971. Vorkommen und Verbreitung von Phenolglykosiden in der Familie der Salicaceen.Herba Pol. 17:248–257.Google Scholar
  38. Tietze, L.F., andEicher, Th. 1991. Reaktionen und Synthese. Thieme, Stuttgart. 636 pp.Google Scholar
  39. Tschesche, R., Ciper, F., andBreitmaier, E. 1977. Monoterpen-Glucoside aus den Blättern vonBetula alba und den Früchten vonChaenomeles japonica.Chem. Ber. 110:3111–3117.Google Scholar
  40. Umbreit, M.A., andSharpless, K.B. 1977. Allylic oxidation of olefins by catalytic and stochiometric selenium dioxide withtert.-butyl hydroperoxide.J. Am. Chem. Soc. 99:5526–5528.Google Scholar
  41. Visser, J.H. 1986. Host odor perception in phytophagous insects.Annu. Rev. Entomol. 31:121–144.Google Scholar
  42. Visser, J.H., Van Straten, S., andMaarse, H. 1979. Isolation and identification of volatiles in the foliage of potato,Solanum tuberosum, a host plant of the Colorado potato beetle,Leptinotarsa decemlineata.J. Chem. Ecol. 5:13–25.Google Scholar
  43. Wain, R.L. 1943. The secretion of salicylaldehyde by the larvae of the brassy willow beetle (Phyllodecta vitellinae). Annu. Rep. Agric. Nat. Stn. pp. 108–110.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. Hilker
    • 1
  • S. Schulz
    • 2
  1. 1.Lehrstuhl für Tierökologie IIUniversität BayreuthBayreuthGermany
  2. 2.Institut für Organische ChemieUniversität HamburgHamburgGermany

Personalised recommendations