Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 3, pp 639–650 | Cite as

Oxidative responses in soybean foliage to herbivory by bean leaf beetle and three-cornered alfalfa hopper

  • G. W. Felton
  • C. B. Summers
  • A. J. Mueller
Article

Abstract

Variation in induced responses in soybean is shown to be dependent, in part, upon herbivore species. Herbivory by the phloem-feeding three-cornered alfalfa hopper caused increases in the activities of several oxidative enzymes including lipoxygenases, peroxidases, ascorbate oxidase, and polyphenol oxidase. Bean leaf beetle defoliation caused increased lipoxygenase activity, but had little effect upon peroxidase, polyphenol oxidase, ascorbate oxidase, or trypsin inhibitor levels in either field or greenhouse studies. In one field experiment, prior herbivory by the bean leaf beetle subsequently reduced the suitability of foliage to the corn earwormHelicoverpa zea. The contribution of these findings to emerging theories of insect-plant interactions is discussed.

Key Words

Soybean lipoxygenase peroxidase polyphenol oxidase trypsin inhibitor ascorbate oxidase oxidative stress Lepidoptera Noctuidae Helicoverpa zea corn earworm Cerotoma trifurcata bean leaf beetle Coleoptera Chrysomelidae Spissistilus festinus three-cornered alfalfa hopper Homoptera Membracidae induced resistance interspecific competition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S. 1992. Biochemical defence of pro-oxidant plant allelochemicals by herbivorous insects.Biochem. Syst. Ecol. 20:269–296.Google Scholar
  2. Ahmad, S., andPardini, R.S. 1990. Antioxidant defense of the cabbage looper,Trichoplusia ni: Enzymatic responses to the superoxide-generating flavonoid, quercetin, and photodynamic furanocoumarin, xanthotoxin.Photochem. Photobiol. 51:305–311.Google Scholar
  3. Apostol, I., Bohlmann, H., andReimann-Philipp, U.R. 1989. Rapid stimulation of an oxidative burst during the elicitation of cultured plant cells.Plant Physiol. 90:109–116.Google Scholar
  4. Aucoin, R.R., Fields, P., Lewis, M.A., Philogene, B.J.R., andArnason, J.T. 1990. The protective effects of antioxidants to a phototoxin-sensitive insect herbivore,Manduca sexta.J. Chem. Ecol. 16:2913–2924.Google Scholar
  5. Baysal, E., Sullivan, S.G., andStern, A. 1989. Prooxidant and antioxidant effects of ascorbate ont-BuOOH-induced erythrocyte membrane damage.Int. J. Biochem. 21:1109–1113.PubMedGoogle Scholar
  6. Bell, A.A., Stipanovich, R.D., Elzen, G.W., andWilliams, H.J., Jr. 1987. Structural and genetic variation of natural pesticides in pigment glands of cotton (Gossypium), pp. 477–490, G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society, Washington, D.C.Google Scholar
  7. Berenbaum, M.R. 1978. Toxicity of a furanocoumarin to armyworms: A case of biosynthetic escape from insect herbivores.Science 201:532–534.Google Scholar
  8. Broadway, R.M., andColvin, A.A. 1992. Influence of cabbage proteinase inhibitorsin situ on the growth of larvalTrichoplusia ni andPieris rapae.J. Chem. Ecol. 18:1009–1024.Google Scholar
  9. Chamulitrat, W., Hughes, M.F., Eling, T.E., andMason, R.P. 1991. Superoxide and peroxyl radical generation from the reduction of polyunsaturated fatty acid hydroperoxides by soybean lipoxygenase.Arch. Biochem. Biophys. 290:153–159.PubMedGoogle Scholar
  10. Cheynier, V.F., andVan Hulst, M.W.J. 1988. Oxidation oftrans-caftaric acid and 2-S-glutathionylicaftaric acid in model solutions.J. Agric. Food Chem. 36:10–14.Google Scholar
  11. Chiang, H.S., Norris, D.M., Ciepiela, A., Shapiro, P. andOosterwyk, A. 1987. Inducible versus constitutive PI 227687 soybean resistance to Mexican bean beetle,Epilachna varivestis.J. Chem. Ecol. 13:741–749.Google Scholar
  12. Chippendale, G.M. 1970. Metamorphic changes in fat body proteins of the southwestern corn borerDiatraea grandiosella.J. Insect. Physiol. 16:1057–1068.PubMedGoogle Scholar
  13. Duffey, S.S., andFelton, G.W. 1991. Enzymatic antinutritive defenses of the tomato plant against insects, pp. 166–197,in P.A. Hedin (ed). Naturally Occurring Pest Bioregulators. American Chemical Society, Washington, D.C.Google Scholar
  14. Enyedi, A.J., Yalpani, N., Silverman, P. andRaskin, I. 1992. Signal molecules in systematic plant resistance to pathogens and pests.Cell 70:879–886.PubMedGoogle Scholar
  15. Esaka, M., Nishitani, I., Fukui, H., Suzuki, K., andKubota, K. 1989. Stimulation of ascorbate oxidase secretion from cultured pumpkin cells by divalent cations.Phytochemistry 28:2655–2658.Google Scholar
  16. Faeth, S.H. 1986. Indirect interactions between temporally separated herbivores mediated by the host plant.Ecology 67:479–494.Google Scholar
  17. Farmer, E.E., andRyan, C.A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase in plant leaves.Proc. Natl. Acad. Sci. U.S.A. 87:7713–7716.PubMedGoogle Scholar
  18. Farmer, E.E., andRyan, C.A. 1992. Octadeconoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors.Plant Cell 4:129–134.PubMedGoogle Scholar
  19. Felton, G.W., andDuffey, S.S. 1991. Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses.J. Chem. Ecol. 17:1715–1732.Google Scholar
  20. Felton, G.W., andSummers, C.B. 1993. Potential role of ascorbate oxidase as a plant defense protein against insect herbivory.J. Chem. Ecol. 19:1553–1568.Google Scholar
  21. Felton, G.S., Donato, K., Del Vecchio, R.J., andDuffey, S.S. 1989. Activation of plant foliar oxidases by insect feeding reduces the nutritive quality of foliage for herbivores.J. Chem. Ecol. 15:2667–2694.Google Scholar
  22. Felton, G.W., Workman, J., andDuffey, S.S. 1992a. Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle.J. Chem Ecol. 18:571–583.Google Scholar
  23. Felton, G.W., Donato, K., Broadway, R.M., andDuffey, S.S. 1992b. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore.J. Insect Physiol. 38:277–285.Google Scholar
  24. Fehr, W.R., andCaviness, C.E. 1977. Stages of soybean development. Iowa Cooperative Extension Service Report 80.Google Scholar
  25. Gaspar, T., Prel, C., Thorpe, T.A., andGreppin, H. 1981. Peroxidases, 1970–1981. University of Geneva Press, Geneva.Google Scholar
  26. Grankvist, K. 1989. Gossypol-induced free radical toxicity to isolated islet cells.Int. J. Biochem. 21:853–856.PubMedGoogle Scholar
  27. Grayburn, W.S., Schneider, G.R., Hamilton-Kemp, T.R., Bookjans, G., Ali, K., andHildebrand, D.F. 1991. Soybean leaves contain multiple lipoxygenases.Plant Physiol. 95:1214–1218.Google Scholar
  28. Grimes, H.D., Koetje, D.S., andFranceschi, V.R. 1992. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings.Plant Physiol. 100:433–443.Google Scholar
  29. Halliwell, B. 1991. The biological toxicity of free radicals and other reactive oxygen species, pp. 37–58,in O.I. Arouma and B. Halliwell (eds.) Free Radicals and Food Additives. Taylor and Francis, New York.Google Scholar
  30. Hanham, A.F., Dunn, B.P., andStich, H.F. 1983. Clastogenic activity of caffeic acid and it relationship to hydrogen peroxide generated during autooxidation.Mutat. Res. 116:333–339.PubMedGoogle Scholar
  31. Harrison, S., andKarban, R. 1986. Effects of any early season folivorous moth on the success of a later-season species, mediated by a change in the quality of the shared host,Lupinus arboreus Sims.Oecologia 69:354–359.Google Scholar
  32. Hildebrand, D.F. 1992. Altering fatty acid metabolism in plants.Food Technol. 46:71–74.Google Scholar
  33. Hildebrand, D.F., Rodriguez, J.G., Brown, G.C., andVolden, C.S. 1986a. Twospotted spider mite (Acari: Tetranychidae) infestations on soybeans: Effect on composition and growth of susceptible and resistant cultivars.J. Econ. Entomol. 79:915–921.Google Scholar
  34. Hildebrand, D.F., Rodriguez, J.G., Brown, G.C., Luu, K.T., andVolden, C.S. 1986b. Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae).J. Econ. Entomol. 79:1459–1465.Google Scholar
  35. Hildebrand, D.F., Hamilton-Kemp, T.R., Legg, C.S., andBookjans, G. 1988. Plant lipoxygenases: Occurrence, properties and possible functions.Curr. Top. Plant. Biochem. Physiol. 7:201–219.Google Scholar
  36. Hildebrand, D.F., Rodriguez, J.G., Legg, C.S., Brown, G.C., andBookjans, G. 1989. The effects of wounding and mite infestation on soybean leaf lipoxygenase levels.Z. Naturforsch. 44:655–659.Google Scholar
  37. Hodnick, W.F., Kalyanaraman, B., Pristos, C.A., andPardini, R.S. 1989. The production of hydroxyl and semiquinone free radicals during the autoxidation of redox active flavonoids, pp. 149–152,in M.G. Simic, K.A. Taylor, J.F. Ward, and C. von Sonntag (eds.) Oxygen Radicals in Biology and Medicine. Plenum Press, New York.Google Scholar
  38. Iyengar, S., Arnason, J.T., Philogene, B.J.R., Morand, P., Werstiuk, N.H. andTimmins, G. 1987. Toxicokinetics of the phototoxic allelochemical α-terthienyl in three herbivorous Lepidoptera.Pestic. Biochem. Physiol. 29:1–5.Google Scholar
  39. Joshi, P.C. andPathak, M.A. 1983. Production of singlet oxygen and superoxide radicals by psoralens and their biological significance.Biochem. Biophys. Res. Commun. 112:638–646.PubMedGoogle Scholar
  40. Kanofsky, J.R., andAxelrod, B. 1986. Singlet oxygen production by soybean lipoxygenase isozymes.J. Biol. Chem. 261:1099–1104.PubMedGoogle Scholar
  41. Karban, R., 1986. Interspecific competition between folivorous insects onErigeron glaucus.Ecology 67:1063–1072.Google Scholar
  42. Karban, R., andEnglish-Loeb, G.M. 1990. A “vaccination” of Willamette spider mites (Acari: Tetranychidae) to prevent large populations of Pacific spider mites on grapevines.J. Econ. Entomol. 83:2252–2257.Google Scholar
  43. Kraemer, M.E., Rangappa, M., Gade, W., andBenepal, P.S., 1987. Induction of trypsin inhibitors in soybean leaves by Mexican bean beetle (Coleoptera: Cocinellidae) defoliation.J. Econ. Entomol. 80:327–341.Google Scholar
  44. Lee, K., andBerenbaum, M.R., 1989. Action of antioxidant enzymes and cytochrome P-450 monoxygenases in the cabbage looper in response to plant phototoxins,Arch. Insect Biochem. Physiol. 10:151–162.Google Scholar
  45. Lee, K., andBerenbaum, M.R. 1990. Defense of parsnip webworm against phototoxic furanocoumarins: Role of antioxidant enzymes.J. Chem. Ecol. 16:2451–2460.Google Scholar
  46. Legendre, L., Rueter, S., Heinstein, P.F., andLow, P.S., 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells.Plant Physiol. 102:233–240.PubMedGoogle Scholar
  47. MacAdam, J.W., Nelson, C.J., Sharp, R.E., 1992. Peroxidase activity in the leaf elongation zone of tall fescue.Plant Physiol. 99:872–878.Google Scholar
  48. Mohri, S., Endo, Y., Matsuda, K., Kitamura, K., andFujimoto, K. 1990. Physiological effects of soybean seed lipoxygenases on insects.Agric. Biol. Chem. 54:2265–2270.Google Scholar
  49. Neupane, F.P., andNorris, D.M. 1991a. Sulfhydryl-reagent alteration of soybean resistance to the cabbage looper,Trichoplusia ni.Entomol. Exp. Appl. 60:239–245.Google Scholar
  50. Neupane, F.P., andNorris, D.M. 1991b. α-Tocopherol alteration of soybean antiherbivory toTrichoplusia ni.J. Chem. Ecol. 17:1941–1951.Google Scholar
  51. Nishimura, K., Ohtsura, M., andNigota, K. 1989. Effect of ascorbic acid and dehydroascorbic acid on ovalbumin.J. Agric. Food Chem. 37:1544–1547.Google Scholar
  52. Pierpoint, W.S. 1983. Reactions of phenolic compounds with proteins, and their relevance to the production of leaf protein, pp. 235–267,in L. Telek and H. Graham (eds.) Leaf Protein Concentrates. Avi Publishing, Westport, Connecticut.Google Scholar
  53. Rubinstein, B. 1992. Similarities between plants and animals for avoiding predation and disease.Physiol. Zool. 65:473–492.Google Scholar
  54. Ryan, J.D., Gregory, P., andTingey, W.M. 1982. Phenolic oxidase activities in glandular trichomes ofSolanum berthaultii.Phytochemistry 21:1885–1887.Google Scholar
  55. Shukle, R.H., andMurdock, L.L. 1983. Lipoxygenase, trypsin inhibitor, and lectin from soybeans: Effects on larval growth ofManduca sexta (Lepidoptera: Sphingidae).Environ. Entomol. 12:787–791.Google Scholar
  56. Sutherland, M.W. 1991. The generation of oxygen radicals during host plant responses to infection.Physiol. Mol. Plant Pathol. 39:79–83.Google Scholar
  57. Tallamy, D., andKrischik, V.A. 1989. Variation and function of cucurbitacins inCucurbita: an examination of current hypotheses.Am. Nat. 133:766–786.Google Scholar
  58. Vera-Estrella, T., Blumwald, E., andHiggins, V.J. 1992. Effect of specific elicitors ofCladosporium fulvum on tomato suspension cells.Plant Physiol. 99:1208–1215.Google Scholar
  59. Vianello, A., andMacri, F. 1991. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells.J. Bioenerg. Biomembr. 23:409–423.PubMedGoogle Scholar
  60. Waldbauer, G.P. 1968. The consumption and utilization of food by insects.Adv. Insect Physiol. 5:229–288.Google Scholar
  61. Zacheo, G. andBleve-Zacheo, T. 1988. Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants toMeliodogyne incognita attack.Physiol. Mol. Plant Pathol. 32:313–322.Google Scholar
  62. Zangerl, A.R. 1990. Furanocoumarin induction in wild parsnip: Evidence for an induced defense against herbivores.Ecology 71:1926–1932.Google Scholar
  63. Zangerl, A.R., andBerenbaum, M.R. 1990. Furanocoumarin induction in parsnip: Genetics and population variation.Ecology 71:1933–1940.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • G. W. Felton
    • 1
  • C. B. Summers
    • 1
  • A. J. Mueller
    • 1
  1. 1.Department of EntomologyUniversity of ArkansasFayetteville

Personalised recommendations