Advertisement

Journal of Chemical Ecology

, Volume 20, Issue 4, pp 871–887 | Cite as

Mating disruption of pea mothCydia nigricana F. (lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors

  • Marie Bengtsson
  • Gerhard Karg
  • Philipp A. Kirsch
  • Jan Löfqvist
  • Arne Sauer
  • Peter Witzgall
Article

Abstract

Synthetic sex pheromone of the pea mothCydia nigricana, (E,E)-8,10-dodecadien-1-yl acetate (E8,E10–12: Ac), was applied in polyethylene dispensers at a rate of 30 g/ha and 600 dispensers/ha in a 0.6-ha pea field. The release rate ofE8,E10–12: Ac was 140 mg/ha/day after six days, and 82 mg/ha/day after 20 days. Aerial concentrations ofE8,E10–12: Ac, as measured by a portable EAG apparatus, ranged from 2 ± 2 to 7 ± 3 ng/m3. The antennal signal was high and rather constant within pea canopy, but was lower and fluctuated strongly above canopy. Initially, >99% isomerically pureE8,E10–12: Ac was released, and male moths were attracted to dispensers. After nine days, isomeric blend composition had equilibrated to approx. 92%E8,E10–12: Ac and 8% of the inhibitory isomersE,Z-,Z,E-, andZ8,Z10–12: Ac. Males were then repelled from the pheromone-permeated field. Traps baited with 100 µgE8,E10–12: Ac caught 258 ± 133C. nigricana males/trap in the control, but no males at all in the disruption field.

Key words

Sex pheromone attraction inhibitor behavioral antagonist mating disruption air permeation field EAG Cydia nigricana Tortricidae Lepidoptera pea moth (E,E)-8,10-dodecadien-1-yl acetate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arn, H. 1990. Pheromones: Prophecies, economics, and the ground swell, pp. 717–722,in R.L. Ridgway, R.M. Silverstein, and M.N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  2. Arn, H. 1992. Mating disruption on its way to perfection: some thoughts, pp. 3–5,in C. Ioriatti and H. Arn (eds.). Use of Pheromones and Other Semiochemicals in Integrated Control. Bulletin OILB/SROP, XV, 5.Google Scholar
  3. Arn, H., Rauscher, S., andSchmid, A. 1979. Sex attractant formulations and traps for the grape mothEupoecilia ambiguella Hb.Mitt. Schweiz. Entomol. Ges. 52:49–55.Google Scholar
  4. Arn, H., Rauscher, S., Buser, H.-R., andGuerin, P.M. 1986. Sex pheromone ofEupoecilia ambiguella female: Analysis and male response to ternary blend.J. Chem. Ecol. 12:1417–1429.Google Scholar
  5. Audemard, H., Leblon, C., Neumann, U., andMarboutie, G. 1989. Bilan de sept années d'essais de lutte contre la Tordeuse orientale du pêcherCydia molesta Busck. (Lep., Tortricidae) par confusion sexuelle des mâles.J. Appl. Entomol. 108:191–207.Google Scholar
  6. Barnes, M.M., Millar, J.G., Kirsch, P.A., andHawks, D.C. 1992. Codling moth (Lepidoptera: Tortricidae) control by dissemination of synthetic female sex pheromone.J. Econ. Entomol. 85:1274–1277.Google Scholar
  7. Bartell, R.J. 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: A review.Physiol. Entomol. 7:353–364.Google Scholar
  8. Bengtsson, M., Liljefors, T., Hansson, B.S., Löfstedt, C., andCopaja, S.V. 1990. Structure-activity relationships for chain-shortened analogs of (Z)-5-decenyl acetate, a pheromone component of the turnip moth,Agrotis segetum.J. Chem. Ecol. 16:667–684.Google Scholar
  9. Bovey, P. 1972. Super-famille des Tortricoidea,in A.S. Balachowsky (ed.). Entomologie Appliquée à l'Agriculture, Vol. II. Masson, Paris.Google Scholar
  10. Bradley, J.D., Tremewan, W.G., andSmith, A. 1973. British Tortricoid Moths. Cochylidae and Tortricidae: Tortricinae. The Ray Society, London.Google Scholar
  11. Brown, D.F., Knight, A.L., Howell, J.F., Sell, C.R., Krysan, J.L., andWeiss, M. 1992. Emission characteristics of a polyethylene pheromone dispenser for mating disruption of codling moth (Lepidoptera: Tortricidae).J. Econ. Entomol. 85:910–917.Google Scholar
  12. Cardé, R.T. 1990. Principles of mating disruption, pp. 47–71,in R.L. Ridgway, R.M. Silverstein, and M.N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and other Attractants. Marcel Dekker, New York.Google Scholar
  13. Cardé, R.T., Doane, C.C., Granett, J., andRoelofs, W.L. 1975. Disruption of pheromone communication in the gypsy moth: Some behavioral effects of disparlure and an attractant modifier.Environ. Entomol. 4:793–796.Google Scholar
  14. Caro, J.H., Glotfelty, D.E., andFreeman, H.P. 1980. (Z)-9-Tetradecen-1-ol formate. Distribution and dissipation in the air within a corn crop after emission from a controlled-release formulation.J. Chem. Ecol. 6:229–239.Google Scholar
  15. Caro, J.H., Freeman, H.P., Brower, D.L., andBierl-Leonhardt, B.A. 1981. Comparative distribution and persistence of disparlure in woodland after aerial application of three controlled-release formulations.J. Chem. Ecol. 7:867–880.Google Scholar
  16. Charlton, R.E., andCardé, R.T. 1981. Comparing the effectiveness of sexual communication disruption in the Oriental fruit moth (Grapholita molesta) using different combinations and dosages of its pheromone blend.J. Chem. Ecol. 7:501–508.Google Scholar
  17. Charmillot, P.-J., andPasquier, D. 1992. Comparison of three dispensers for mating disruption technique to control the summerfruit tortrixAdoxophyes orana.Mitt. Schweiz. Entomol. Ges. 65:107–113.Google Scholar
  18. Christensen, T.A., Mustaparta, H., andHildebrand, J.G. 1991. Chemical communication in heliothine moths. II. Central processing of intra- and interspecific olfactory messages in the male corn earwormHelicoverpa zea.J. Comp. Physiol A 169:259–274.Google Scholar
  19. Davis, H.G., McDonough, L.M., Burditt, A.K., Jr., andBierl-Leonhardt, B.A. 1984. Filbertworm sex pheromone. Identification and field tests of (E,E)- and (E,Z)-8, 10-dodecadien-1-ol acetates.J. Chem. Ecol. 10:53–61.Google Scholar
  20. Flint, H.M., andMerkle, J.R. 1983. Pink bollworm (Lepidoptera: Gelechiidae): Communication disruption by pheromone composition imbalance.J. Econ. Entomol. 76:40–46.Google Scholar
  21. Flint, H.M., andStone, M. 1985.Pectinophora scutigera (Holdaway) (Lepidoptera: Gelechiidae): Monitoring populations and disrupting sexual communication withZ,Z- andZ,E-7, 11–16: Ac in the field.J. Aust. Entomol. Soc. 24:281–286.Google Scholar
  22. Greenway, A.R. 1984. Sex pheromone of the pea moth,Cydia nigricana (F.) (Lepidoptera: Olethreutidae).J. Chem. Ecol. 10:973–982.Google Scholar
  23. Hathaway, D.O., Moffitt, H.R., andGeorge, D.A. 1985. Codling moth (Lepid.: Tortricidae): Disruption of sexual communication with an antipheromone [(E,E)-8, 10-dodecadien-1-ol acetate].J. Entomol. Soc. B. C. 82:18–22.Google Scholar
  24. Howell, J.F., Knight, A.L., Unruh, T.R., Brown, D.F., Krysan, J.L., Sell, C.R., andKirsch, P.A. 1992. Control of codling moth in apple and pear with sex pheromone-mediated mating disruption.J. Econ. Entomol. 85:918–925.Google Scholar
  25. Johnson, D.T., Lewis, B.A., andSnow, J.W. 1991. Control of grape root borer (Lepidoptera: Sesiidae) by mating disruption with two synthetic pheromone compounds.Environ. Entomol. 20:930–934.Google Scholar
  26. Jutsum, A.R., andGordon, R.F.S. (eds.). 1989. Insect Pheromones in Plant Protection. Wiley, Chichester.Google Scholar
  27. Karandinos, M.G., Tumlinson, J.H., andEichlin, T.D. 1977. Field evidence of synergism and inhibition in the Sesiidae sex pheromone system.J. Chem. Ecol. 3:57–64.Google Scholar
  28. Karg, G., Sauer, A.E., andKoch, U.T. 1990. The influence of plants on the development of pheromone atmospheres measured by EAG method, p. 301,in N. Elsner and G. Roth (eds.). Brain-Perception-Cognition, Proceedings of the 18th Goettingen Neurobiology Conference. Thieme, Stuttgart.Google Scholar
  29. Kirsch, P.A. 1992. Mating disruption: Ideas on breaking through the glass ceiling? pp. 18–26.in C. Ioriatti and H. Am (eds.). Use of Pheromones and Other Semiochemicals in Integrated Control. Bulletin OILB/SROP, XV, 5.Google Scholar
  30. Kolodny-Hirsch, D.M., andSchwalbe, C.P. 1990. Use of disparlure in the management of the gypsy moth, pp. 363–385,in R.L. Ridgway, R.M. Silverstein, and M.N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  31. Linn, C.E., Jr., Campbell, M.G., andRoelofs, W.L. 1986. Male moth sensitivity to multicomponent pheromones: Critical role of female-released blend in determining the functional role of components and active space of the pheromone.J. Chem. Ecol. 12:659–668.Google Scholar
  32. Liu, Y.-B., andHaynes, K.F. 1992. Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage looper moth,Trichoplusia ni. J. Chem. Ecol. 18:299–307.Google Scholar
  33. Marks, R.J. 1976. The influence of behaviour modifying chemicals on mating success of the red bollwormDiparopsis castanea Hmps. (Lepidoptera, Noctuidae) in Malawi.Bull. Entomol. Res. 66:279–300.Google Scholar
  34. Miller, E., Staten, R.T., Nowell, C., andGourd, J. 1990. Pink bollworm (Lepidoptera: Gelechiidae): Point source density and its relationship to efficacy in attracticide formulations of gossyplure.J. Econ. Entomol. 83:1321–1325.Google Scholar
  35. Miller, J.R., andRoelofs, W.L. 1978. Gypsy moth responses to pheromone enantiomers as evaluated in a sustained flight tunnel.Environ. Entomol. 7:42–44.Google Scholar
  36. Neumann, U. 1990. Commercial development: mating disruption of the European grape berry moth, pp. 539–546,in R.L. Ridgway, R.M. Silverstein, and M.N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  37. Neumann, U., Vogt, H., Schropp, A., Englert, W.D., andSchruft, G. 1988. Lutte par confusion sexuelle contre la Tordeuse de la grappe (Cochylis), pp. 167–174,in C. Descoins and B. Frérot (eds.). Médiateurs Chimiques: Comportement et Systématique des Lépidoptères. Applications en Agronomie. Les Colloques de l'INRA, No. 46, Paris.Google Scholar
  38. Novak, M.A., andRoelofs, W.L. 1985. Behavior of male redbanded leafroller moths,Argyrotaenia velutinana (Lepidoptera: Tortricidae), in small disruption plots.Environ. Entomol. 14:12–16.Google Scholar
  39. Palaniswamy, P., andUnderhill, E.W. 1988. Mechanisms of orientation disruption by sex pheromone components in the redbacked cutworm,Euxoa ochrogaster (Guenée) (Lepidoptera: Noctuidae).Environ. Entomol. 17:432–441.Google Scholar
  40. Palaniswamy, P., Chisholm, M.D., Underhill, E.W., Reed D.W., andPeesker, S.J. 1983. Disruption of forest tent caterpillar (Lepidoptera: Lasiocampidae) orientation to baited traps in aspen groves by air permeation with (5Z,7E)-5,7-dodecadienal.J. Econ. Entomol. 76:1159–1163.Google Scholar
  41. Palaniswamy, P., Underhill, E.W., Gillott, C., andWong, J.W. 1986. Synthetic sex pheromone components disrupt orientation, but not mating, in the fall cankerworm,Alsophila pometaria (Lepidoptera: Geometridae).Environ. Entomol. 15:943–950.Google Scholar
  42. Pfeiffer, D.G., Killian, J.C., Rajotte, E.G., Hull, L.A., andSnow, J.W. 1991. Mating disruption for reduction of damage by lesser peachtree borer (Lepidoptera: Sesiidae) in Virginia and Pennsylvania peach orchards.J. Econ. Entomol. 84:218–223.Google Scholar
  43. Pfeiffer, D.G., Kaakeh, W., Killian, J.C., Lachance, M.W., andKirsch, P. 1993. Mating disruption for control of damage by codling moth in Virginia apple orchards.Entomol. Exp. Appl. 67:57–64.Google Scholar
  44. Preiss, R., andKramer, E. 1983. Stabilization of altitude and speed in tethered flying gypsy moth males: influence of (+) and (−)-disparlure.Physiol. Entomol. 8:55–68.Google Scholar
  45. Priesner, E., andWitzgall, P. 1984. Modification of pheromonal behaviour in wildColeophora laricella male moths by (Z)-5-decenyl acetate, an attraction-inhibitor.J. Appl. Entomol. 98:118–135.Google Scholar
  46. Rauscher, S., andArn, H. 1979. Mating suppression in tethered females ofEupoecilia ambiguella by evaporation of (Z)-9-dodecenyl acetate in the field.Entomol. Exp. Appl. 25:16–20.Google Scholar
  47. Rice, R.E., andKirsch, P. 1990. Mating disruption of Oriental fruit moth in the United States, pp. 193–211,in R.L. Ridgway, R.M. Silverstein, and M.N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  48. Richerson, J.V. 1977. Pheromone-mediated behavior of the gypsy moth.J. Chem. Ecol. 3:291–308.Google Scholar
  49. Ridgway, R.L., Silverstein, R.M., andInscoe, M.N. (eds.). 1990. Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and other Attractants. Marcel Dekker, New York.Google Scholar
  50. Rumbo, E.R., Deacon, S.M., andRegan, L.P. 1993. Spatial discrimination between sources of pheromone and an inhibitor by the light-brown apple mothEpiphyas postvittana (Walker) (Lepidoptera: Tortricidae).J. Chem. Ecol. 19:953–962.Google Scholar
  51. Sanders, C.J. 1982. Disruption of male spruce budworm orientation to calling females in a wind tunnel by synthetic pheromone.J. Chem. Ecol. 8:493–506.Google Scholar
  52. Sauer, A.E., Karg, G., Koch, U.T., de Kramer, J.J., andMilli, R. 1992. A portable EAG system for the measurement of pheromone concentrations in the field.Chem. Senses 17:543–553.Google Scholar
  53. Schwalbe, C.P., andMastro, V.C. 1988. Gypsy moth mating disruption: Dosage effects.J. Chem. Ecol. 15:581–588.Google Scholar
  54. Suckling, D.M., andClearwater, J.R. 1990. Small scale trials of mating disruption ofEpiphyas postvittana (Lepidoptera: Tortricidae).Environ. Entomol. 19:1702–1709.Google Scholar
  55. Tatsuki, S. 1990. Application of the sex pheromone of the rice stem borer moth,Chilo suppressalis, pp. 387–406,in R.L. Ridgway, R.M. Silverstein, and M.N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.Google Scholar
  56. Vogt, H. 1987. Several years of experience with the mating disruption technique for control of the European grape mothEupeocilia ambiguella Hbn., pp. 5–6,in H. Arn (ed.). Mating Disruption: Behaviour of Moths and Molecules. Bulletin OILB/SROP, X, 3.Google Scholar
  57. Wall, C., Sturgeon, D.M., Greenway, A.R., andPerry, J.N. 1981. Contamination of vegetation with synthetic sex attractant released from traps for the pea mothCydia nigricana.Entomol. Exp. Appl. 30:111–115.Google Scholar
  58. Webb, R.E., Tatman, K.M., Leonhardt, B.A., Plimmer, J.R., Boyd, V.K., Bystrak, P.G., Schwalbe, C.P., andDouglass, L.W. 1988. Effect of aerial application of racemic disparlure on male trap catch and female mating success of gypsy moth (Lepidoptera: Lymantriidae).J. Econ. Entomol. 81:268–273.Google Scholar
  59. Wiesner, C.J., Silk, P.J., Tan, S.-H., andFullarton, S. 1980. Monitoring of atmospheric concentrations of the sex pheromone of the spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae).Can. Entomol. 112:333–334.Google Scholar
  60. Witzgall, P., andPriesner, E. 1991. Wind tunnel study on an attraction inhibitor in maleColeophora laricella (Lepidoptera: Coleophoridae).J. Chem. Ecol. 17:1355–1362.Google Scholar
  61. Witzgall, P., Bengtsson, M., Unelius, C.R., andLöfqvist, J. 1993. Attraction of pea mothCydia nigricana F. (Lepidoptera: Tortricidae) to female sex pheromone (E,E)-8,10-dodecadien-1-yl acetate, is inhibited by geometric isomersE,Z,Z,E, andZ,Z.J. Chem. Ecol. 19:1917–1928.Google Scholar
  62. Yamamoto, A., andOgawa, K. 1989. Chemistry and commercial production of pheromones and other behaviour-modifying chemicals, pp. 123–148,in A.R. Jutsum and R.F.S. Gordon (eds.). Insect Pheromones in Plant Protection. John Wiley, London.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Marie Bengtsson
    • 1
  • Gerhard Karg
    • 1
  • Philipp A. Kirsch
    • 2
  • Jan Löfqvist
    • 1
  • Arne Sauer
    • 3
  • Peter Witzgall
    • 1
  1. 1.Department of Plant Protection SciencesSwedish University of Agricultural SciencesLundSweden
  2. 2.Trécé IncorporatedWest Linn
  3. 3.Department of BiologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations