Foundations of Physics

, Volume 25, Issue 4, pp 573–604 | Cite as

Quantum phenomena and the zeropoint radiation field. II

  • L. de la Peña
  • A. M. Cetto
Article

Abstract

A previous paper was devoted to the discussion of a new version of stochastic electrodynamics (SED) and to the study of the conditions under which quantum mechanics can be derived from it, in the radiationless approximation. In this paper further effects on matter due to the zeropoint field are studied, such as atomic stability, radiative transitions, the Lamb shift, etc., and are shown to be correctly described by the proposed version of SED. Also, a detailed energy-balance condition and a fluctuation-dissipation relation are established; it is shown in particular that equilibrium is attained only with a field spectrum ∼Ω3.The proposed approach is shown to suggest an understanding of quantum mechanics as a kind of limitcycle theory. Finally, a brief discussion is included about the nonchaotic behavior of the (bounded) SED system in the quantum regime, as measured by Lyapunov exponents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. de la Peña and A. M. Cetto, “Quantum phenomena and the zeropoint radiation field,”Found. Phys. 24, 917 (1994).Google Scholar
  2. 2.
    See, e. g., L. E. Reichl,A Modernm Course in Statical Physics (University of Texas Press, Austin, 1980).Google Scholar
  3. 3.
    L. de la Peña and A. M. Cetto,Nuovo Cimento B 92, 189 (1986).Google Scholar
  4. 4.
    L. de la Peña, inStochastic Processes Applied to Physics and Other Related Fields, B. Gómezet al. eds. (World Scientific, Singapore, 1983).Google Scholar
  5. 5.
    T. W. Marshall and P. Claverie,J. Math. Phys. 21, 1819 (1980); P. Claverie, L. Pesquera, and F. Soto,Phys. Lett. A 80, 113 (1980); P. Claverie and F. Soto,J. Math. Phys. 23, 753 (1982); L. Pesquera, thesis, Université de Paris VI, 1980, unpublished.Google Scholar
  6. 6.
    A. M. Cetto and L. de la Peña, inNonlinear Fields: Classical, Random, Semiclassical, P. Garbaczewski and Z. Popowicz, eds. (World Scientific, Singapore, 1991), pp. 416, 436.Google Scholar
  7. 7.
    M. Alcubierre and N. S. Lozano,Tratamiento de sistemas multiperiódicos en la electrodinámica estocástica, thesis, UNAM, 1988, unpublished.Google Scholar
  8. 8.
    T. W. Marshall,Proc. Cambridge Philos. Soc. 61, 537 (1965); T. H. Boyer,Phys. Rev. 182, 1374 (1969).Google Scholar
  9. 9.
    D. C. Cole,Phys. Rev. A 42, 1847 (1990),Phys. Rev. A 45, 8471 (1992).Google Scholar
  10. 10.
    J. H. van Vleck and D. L. Huber,Rev. Mod. Phys. 49, 939 (1977).Google Scholar
  11. 11.
    T. H. Boyer,Phys. Rev. D 13, 2832 (1976);Phys. Rev. A 18, 1228 (1978).Google Scholar
  12. 12.
    R. Blanco, L. Pesquera, and E. Santos,Phys. Rev. D 27, 1254 (1983);29, 2240 (1984); E. Santos, inStochastic Processes Applied to Physics, L. Pesquera and M. A. Rodríguez, eds. (World Scientific, Singapore, 1985).Google Scholar
  13. 13.
    A. M. Cetto and L. de la Peña,Phys. Rev. A 37, 1952, 1960 (1988);Phys. Scr. T 21, 27 (1988). See also L. de la Peña and A. M. Cetto,Found. Phys. 19, 419 (1989).Google Scholar
  14. 14.
    H. B. Callen and T. A. Welton,Phys. Rev. 83, 34 (1951). See also, e.g., Ref. 2, Chap. 15.Google Scholar
  15. 15.
    For a comparison with similar results of nonrelativistic SED for a two-level atom, see P. W. Milonni,Phys. Scr. T 21, 102 (1988).Google Scholar
  16. 16.
    See, e.g., D. J. Kaup,Phys. Rev. 152, 1130 (1966).Google Scholar
  17. 17.
    A. M. Cetto and L. de la Peña,Rev. Mex. Fis. 29, 537 (1983). Causal versions of radiation reaction are well known; a nice discussion can be found in the book cited in Ref. 20.Google Scholar
  18. 18.
    The form factorK(Ωs 0) coincides with that derived in D. Bohm and M. Weinstein,Phys. Rev. 74, 1789 (1948).Google Scholar
  19. 19.
    An early derivation of theA coefficient for the SED harmonic oscillator can be found in T. W. Marshall,Izv. Vyssh. Uchebn. Zaved., Fiz. 11, 34 (1968); more recent results can be seen in L. de la Peña and A. M. Cetto,J. Math. Phys. 20, 469 (1979); H. M. FranÇa, T. W. MarshallPhys. Rev. A 38, 3258 (1988); H. M. FranÇa, T. W. Marshall and E. Santos,Phys. Rev. A 45, 6436 (1992).Google Scholar
  20. 20.
    P. W. Milonni,Phys. Rep. 25, 1, 1 (1976) and references therein. See also P. W. Milonni,The Quantum Vacuum (Academic, San Diego, 1994).Google Scholar
  21. 21.
    T. A. Welton,Phys. Rev. 74, 1157 (1948).Google Scholar
  22. 22.
    H. A. Bethe,Phys. Rev. 72, 339 (1947); reprinted inQuantum Electrodynamics, J. Schwinger, ed. (Dover, New York, 1958). J. J. Sakurai,Advanced Quantum Mechanics (Addison-Wesley, Reading. Massachusetts, 1967).Google Scholar
  23. 23.
    L. de la Peña and A. M. Cetto,Found. Phys. 8, 191 (1978), L. de la Peña and A. Jáuregui,Found. Phys. 12, 441 (1982). See also the second paper cited in Ref. 19.Google Scholar
  24. 24.
    E. Santos,Nuovo Cimento B 19, 57 (1974). See also L. de la Peña and A. M. Cetto, inProceedings, International Symposium on the Foundations of Quantum Physics, Oviedo 1993. M. Ferrero and A. van der Merwe, eds. (Kluwer Academic Press, San Diego, 1995).Google Scholar
  25. 25.
    S. Eubank and D. Farmer, in1989 Lectures in Complex Systems (Lecture Vol. II); E. Jen, ed. (Addison-Wesley, Reading, Massachusetts, 1990).Google Scholar
  26. 26.
    J. P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57, 617 (1985).Google Scholar
  27. 27.
    M. Hossein Partovi,Phys. Rev. A 45, R555 (1992).Google Scholar
  28. 28.
    R. L. Ingraham, M. E. Goggin, and P. W. Milonni, inCoherence and Quantum Optics VI J. H. Eberlyet al. eds. (Plenum, New York, 1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. de la Peña
    • 1
  • A. M. Cetto
    • 1
  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexico, D.F.

Personalised recommendations