Foundations of Physics

, Volume 26, Issue 1, pp 17–70 | Cite as

Octonionic representations of Clifford algebras and triality

  • Jörg Schray
  • Corinne A. Manogue
Article

Abstract

The theory of representations of Clifford algebras is extended to employ the division algebra of the octonions or Cayley numbers. In particular, questions that arise from the nonassociativity and noncommutativity of this division algebra are answered. Octonionic representations for Clifford algebras lead to a notion of octonionic spinors and are used to give octoninic representations of the respective orthogonal groups. Finally, the triality automorphisms are shown to exhibit a manifest Σ3×SO(8) structure in this framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kugo and P. Townsend, “Supersymmetry and the division algebras,”Nucl. Phys. B 221, 357 (1983). I. Bengtsson and M. Cederwall, “Particles, twistors and the division algebras,”Nucl. Phys. 5302, 81 (1988).Google Scholar
  2. 2.
    J. M. Evans, “Supersymmetric Yang-Mills theories and division algebras,”Nucl. Phys. B 298, 92 (1988).Google Scholar
  3. 3.
    A. Sudbery, “Division algebras, (pseudo) orthogonal groups and spinors,”J. Phys. A 17, 939 (1984).Google Scholar
  4. 4.
    K. W. Chung and A. Sudbery, “Octonions and the Lorentz and conformal groups of tendimensional space-time,”Phys. Lett. B 198, 161 (1987). F. Gürsey, “Super Poincaré groups and division algebras,”Mod. Phys. A 2, 967 (1987). F. Gürsey,Supergroups in Critical Dimensions and Division Algebras (Proceedings of Capri Symposia 1983–1987), Buccella-Franco, ed. (Lecture Notes Series No. 15, American Institute of Physics, 1990), p. 529.Google Scholar
  5. 5.
    C. A. Manogue and J. Schray, “Finite Lorentz transformations, automorphisms, and division algebras,”J. Math. Phys. 34, 3746 (1993).Google Scholar
  6. 6.
    H. Tachibana and K. Imaeda, “Octonions, superstrings and ten-dimensional spinors,”Nuovo Cimento B 104, 91 (1989).Google Scholar
  7. 7.
    D. B. Fairlie and C. A. Manogue. “A parameterization of the covariant superstring,”Phys. Rev. D 36, 475 (1987). C. A. Manogue and A. Sudbery, “General solutions of covariant superstring equations of motion,”Phys. Rev. D 40, 4073 (1989).Google Scholar
  8. 8.
    I. Oda, T. Kimura, and A. Nakamura, “Superparticles and division algebras—ten dimensions and octonions,”Prog. Theor. Phys. 80, 367 (1988).Google Scholar
  9. 9.
    J. F. Adams,Super space and Supergravity (Proceedings of the Nuffield Workshop), S. W. Hawking/M. Roček, eds. (Cambridge University Press, Cambridge, 1981).Google Scholar
  10. 10.
    I. R. Porleous,Topological Geometry (Cambridge University Press, Cambridge, 1981).Google Scholar
  11. 11.
    P. Jordan, J. von Neumann, and E. Wigner,Ann. Math. 36, 29 (1934).Google Scholar
  12. 12.
    M. Cederwall, “Jordan algebra dynamics.”Phys. Lett. B 210, 169 (1988). E. Corrigan and T. J. Hollowood, “The Exceptional Jordan algebra and the superstring,”Commun. Math. Phys. 122, 393 (1989). E. Corrigan and T. J. Hollowood, “A string construction of a commutative nonassociative algebra related to the exceptional Jordan algebra,”Phys. Lett. B 203, 47 (1988). R. Foot and G. C. Joshi, “Space-time symmetries of superstring and Jordan algebras,”Int. J. Theor. Phys. 28, 1449 (1989). R. Foot and G. C. Joshi, “String theories and Jordan algebras,”Phys. Lett. B 199, 203 (1987). M. Günaydin, G. Sierra, and P. K. Townsend, “The geometry ofN = 2 Maxwell-Einstein supergravily and Jordan algebras,”Nucl. Phys. B 242, 244 (1984). M. Günaydin, G. Sierra, and P. K. Townsend, “Exceptional supergravity theories and the magic square,”Phys. Lett. 133B, 72 (1983). F. Gürsey, “Lattices generated by discrete Jordan algebras,”Mod. Phys. Lett. 3, 1155 (1988). G. Sierra, “An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings,”Class. Quantum Gravit,4, 227 (1987).Google Scholar
  13. 13.
    G. Dixon, “Adjoint division algebras andSU(3),”J. Math. Phys. 31, 504 (1990). G. Dixon, “Division algebras, (1,9)-space-time, matter-antimatter mixing,” hepth/9303039. G. Dixon, “Derivation of the standard model,”Nuovo Cimento 105B, 349 (1990).Google Scholar
  14. 14.
    R. D. Schafer, “An Introduction to Non-Associative Algebras (Academic Press, New York, 1966).Google Scholar
  15. 15.
    M. Zorn, “Theorie der alternativen Ringe,”Abhandlungen des mathematischen Seminars der Hamburgischen Universität 8 (1930).Google Scholar
  16. 16.
    R. Moufang, “Zur Struktur von Alternativkörpern,”Math. Ann. 110, 416–430 (1934).Google Scholar
  17. 17.
    A. Hurwitz, “Über die Composition der quadratischen Formen von beliebig vielen Variablen,”Nachr. Ges. Wiss. Göttingen, 309–316 (1898). L. E. Dickson, “On quaternions and the history of the eight square theorem,”Ann. Math. 2 20, 155 (1919).Google Scholar
  18. 18.
    W. R. Hamilton, “On quaternions, or a new system of imaginaries in algebras,”Philos. Mag. Ser: 3 25, 489 (1845).Google Scholar
  19. 19.
    A. Cayley, “On Jacobi's elliptic functions, in reply to the Rev. Brice Bronwin; and on quaternions,”Philos. Mag. Ser. 3 26, 210 (1845).Google Scholar
  20. 20.
    See any standard text on Linear Algebra, for example K. Hoffman and R. A. Kunze,Linear algebra (Prentice-Hall Englewood Cliffs, New Jersey, 1971), p. 280.Google Scholar
  21. 21.
    H. S. M. Coxeter, “Integral Cayley numbers.”Duke Math. J. 13, 561 (1946).Google Scholar
  22. 22.
    H. S. M. Coxeter,The Real Projectile Plane (Cambridge University Press, Cambridge, 1955). A. A. Adrian and R. Sandler,An Introduction to Finite Projective Planes (Holt, Rinehart and Winston: New York, 1968).Google Scholar
  23. 23.
    J. Rotman,The Theory of Groups, an Introduction (Allyn and Bacon, Boston, 1965).Google Scholar
  24. 24.
    M. Aschbacher,Finite Group Theory (Cambridge University Press, Cambridge, 1988), Table 16.1.Google Scholar
  25. 25.
    M. Cederwall and C. R. Preitschopf, “S7 and Ś7,” hep-th/9309030 (1993).Google Scholar
  26. 26.
    I. M. Benn and R. W. Tucker.An Introduction to Spinors and Geometry with Applications in Physics (Adam Hilger, Bristol, Philadelphia, 1987).Google Scholar
  27. 27.
    P. Lounesto, “Scalar products of spinors and an extension of Brauer-Wall groups,”Found. Phys. 11, 721 (1981).Google Scholar
  28. 28.
    P. Budinich and A. Trautman,The Spinorial Chessboard (Springer, Berlin and Heidelberg, 1988).Google Scholar
  29. 29.
    C. W. Curtis and I. Reiner,Representation Theory of Finite Groups and Associative Algebras (Interscience Publishers, New York, 1962).Google Scholar
  30. 30.
    J. Schray, “The general classical solution of the superparticle,” hep-th/9407045 (accepted for publication inClass. Quantum Gravit.).Google Scholar
  31. 31.
    C. C. Chevalley,The Algebraic Theory of Spinors (Columbia University Press, New York, 1954).Google Scholar
  32. 32.
    A. R. Dündarer and F. Gürsey, “Octonionic representations of SO(8) and its subgroups and cosets,”J. Math. Phys. 32, 1176 (1991). A. R. Dündarer, F. Gürsey, and C.-H. Tze, “Generalized vector products, duality and octonionic identities inD=8 geometry,”J. Math. Phys. 25, 1496 (1984).Google Scholar
  33. 33.
    B. G. Wybourne,Classical Groups for Physicists (Wiley, New York, 1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Jörg Schray
    • 1
  • Corinne A. Manogue
    • 1
  1. 1.Department of PhysicsOregon State UniversityCorvalis

Personalised recommendations