Calcified Tissue Research

, Volume 3, Issue 1, pp 340–347 | Cite as

Skeletal uptake of simultaneously ingested fluoride and calcium in the rat

  • Y. Ericsson
Original Papers

Abstract

Rat experiments with labelled compounds were carried out in order to test the possibilities of simultaneous peroral supply of fluorine (F) and calcium (Ca) in proportions calculated for treatment of certain human osteopenias. F in the form of Na2PO3F and Ca in the form of calcium gluconate (CaGluc) did not interfere with each other's utilisation by the skeleton (femur). A high viscosity produced by adding starch or carboxymethyl cellulose (CMC) to the ingested solution or slurry increased the utilisation of F even when CaGluc was replaced by calcium citrate, which moderately reduced F utilisation. Calcium glycerophosphate strongly reduced F utilisation even in the presence of CMC. The utilisation of F as NaF was strongly reduced by CaGluc, even in the presence of CMC. The tested concentrations of Na2PO3F, NaF or CMC did not influence the skeletal utilisation of Ca as CaGluc.

Key words

Bone Calcium Fluoride Ingestion compatibility 

Résumé

Des expériences ont été faites sur le rat afin de tester les possiblités d'ingestion perorale simultanée de fluor (F) et de calcium (Ca) en proportions calculées pour traitement de certaines ostéopénies humaines. F sous forme de Na2PO3F et Ca sous forme de gluconate de calcium (CaGluc) n'influençaient pas l'un l'autre quant à l'utilisation par le squelette (fémur). Une viscosité élevée, produite par l'addition d'amidon ou de cellulose carboxyméthylée (CMC) à la solution ou dilution ingérée, augmentait l'utilisation du F même si CaGluc était remplacé par citrate de calcium, qui en soi avait un effet réducteur modéré sur l'utilisation du F. Le glycérophosphate de calcium réduisait fortement l'utilisation du F même en présence de CMC. L'utilisation du F comme NaF était fortement réduite par CaGluc, même en présence de CMC. Les concentrations testées de Na2PO3F, NaF ou CMC n'influençaient pas l'utilisation squelettique de Ca comme CaGluc.

Zusammenfassung

Es wurden Rattenexperimente mit markierten Substanzen durchgeführt, um die Auswirkung simultaner peroraler Gaben von Fluor (F) und von Calcium (Ca) zu prüfen, und zwar in einem Verhältnis, das für die Behandlung gewisser menschlicher Osteopenien berechnet wurde. Fluor in Form von Na2PO3F und Ca in Form von Calciumgluconat (CaGluc) interferieren gegenseitig nicht bei der Verwertung durch das Skelet (Femur). Eine hohe Viscosität der eingegebenen Lösung oder der Aufschlämmung, die durch Zusatz von Stärke oder Carboxymethylcellulose (CMC) erzielt wurde, erhöhte die Verwertbarkeit von F sogar wenn CaGluc durch Calciumcitrat ersetzt wurde, welches die F-Verwertung leicht reduzierte. Calcium-glyzerophosphat verminderte die Fluoraufnahme in den Knochen stark, sogar in Anwesenheit von CMC. Die Verwertung von F als NaF war stark herabgesetzt durch CaGluc, selbst beim Vorhandensein von CMC. Die untersuchten Konzentrationen von Na2PO3F, NaF oder CMC hatten keinen Einfluß auf die Calciumaufnahme im Skelet in Form von CaGluc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, D. S., C. D. Guri, P. Cohen, J. J. Collins, andS. Tamvakopoulos: The use of sodium fluoride in metabolic bone disease. J. clin. Invest.42, 916 (1963).Google Scholar
  2. Bjerrum, J., G. Schwarzenbach, andL. G. Sillén: Stability constants of metal-ion complexes. London: The Chemical Society 1957.Google Scholar
  3. Cass, R. M., J. D. Croft Jr., P. Perkins, W. Nye, C. Waterhouse, andR. Terry: New bone formation in osteoporosis following treatment with sodium fluoride. Arch. intern. Med.118, 111–116 (1966).PubMedGoogle Scholar
  4. Cohen, P., andF. H. Gardner: Induction of subacute skeletal fluorosis in a case multiple myeloma. New Engl. J. Med.271, 1129–1133 (1964).PubMedGoogle Scholar
  5. Dean, H. T., F. A. Arnold, andE. Elvove: Domestic water and dental caries. V. Additional studies of the relation of fluoride domestic waters to dental caries experience in 4,425 white children aged 12 to 14 years, of 13 cities in 4 states. Publ. Hlth Rep. (Wash.)57, 1155–1179 (1942).Google Scholar
  6. Ericsson, Y.: The state of fluorine in milk and its absorption and retention when administered in milk. Investigations with radioactive fluorine. Acta odont. scand.16, 51–77 (1958).Google Scholar
  7. Ericsson, Y.: Double labelling of sodium monofluorophosphate with P32 and F18. Int. J. appl. Radiat. Isot.10, 177–180 (1961).PubMedGoogle Scholar
  8. —: Blood fluoride clearance in rats differing in age or previous fluoride exposure. Investigations using radioactive fluorine. Acta odont. scand.24, 393–404 (1966).Google Scholar
  9. —: Biologic splitting of PO3F ions. Caries Res.1, 144–152 (1967).PubMedGoogle Scholar
  10. —: Influence of sodium chloride and certain other food components on fluoride absorption in the rat. J. Nutr.96, 60–68 (1968).Google Scholar
  11. —, andL. Hammarström: The distribution in the mammal body of F18 and P32 from double-labelled Na2PO3F. Acta physiol. scand.65, 126–137 (1965).Google Scholar
  12. —,G. Santesson, andS. Ullberg: Absorption and metabolism of the PO3F ion in the animal body. Studies with F18, P32-labelled sodium monofluorophosphate. Arch. oral Biol. Spec. Suppl.4, 160–174 (1961).Google Scholar
  13. —, andS. Ullberg: Autoradiographic investigations of the distribution of F18 in mice and rats. Acta odont. scand.16, 363–374 (1958).Google Scholar
  14. Gershon-Cohen, J., andJ. Jowsey: The relationship of dietary calcium to osteoporosis. Metabolism13, 221–226 (1964).PubMedGoogle Scholar
  15. Grøn, P., H. C. McCann, andD. S. Bernstein: Effect of fluoride on human osteoporotic bone mineral. A chemical and crystallographic study. J. Bone Jt Surg. A48, 892–898 (1966).Google Scholar
  16. Hac, L. R., andS. Freeman: Effects of fluoride and parathyroid extract on citrate and bone metabolism. Amer. J. Physiol.212, 213–216 (1967).PubMedGoogle Scholar
  17. Hioco, D., J. Samuel, andS. de Sèze: Traitement des ostéoporoses par les hautes doses de calcium. Rev. Rhum.30, 601–612 (1963).PubMedGoogle Scholar
  18. Jowsey, J., andP. J. Kelly: Effect of fluoride treatment in a patient with osteoporosis. Proc. Mayo Clin.43, 435–443 (1968).PubMedGoogle Scholar
  19. —, andF. W. Reutter: Some results of the effect of fluoride on bone tissue in osteoporosis. J. clin. Endocr.28, 869–874 (1968).PubMedGoogle Scholar
  20. Naylor, M. N., andR. F. Wilson: The effect of fluoridated drinking water on the femurs of albino rats. J. dent. Res.46, Suppl. 125, Abstr. No 67 (1967).Google Scholar
  21. Nordin, B. E. C.: Osteoporosis and calcium deficiency. In: Bone as a tissue (eds.K. Rodahl, J. T. Nicholson, andE. M. Brown). London: McGraw-Hill 1960.Google Scholar
  22. Poulsen, H., andY. Ericsson: Chronic toxicity of dietary sodium monofluorophosphate in growing rats, with special reference to kidney changes. Acta path. microbiol. scand.65, 493–504 (1965).PubMedGoogle Scholar
  23. Radcliff, R., andJ. C. Muhler: The effect of varying levels of dietary calcium and phosphorus on fluoride retention in the rat. I.A.D.R. 35th Gen. Meet. 1957. Pre-print. Abstr. p. 6.Google Scholar
  24. Singer, L., M. D. Dale, andW. D. Armstrong: Effects of high fluoride intake on utilisation of dietary calcium and on solubility of calcified tissues. J. dent. Res.44, 582–586 (1965).PubMedGoogle Scholar
  25. Smith, D. A., andB. E. C. Nordin: The effect of calcium supplements on spinal density in osteoporosis. Bone and tooth, p. 411. London: Pergamon 1964.Google Scholar
  26. Wagner, M. J., andJ. C. Muhler: The metabolism of natural and artificial fluoridated water. J. dent. Res.36, 552–558 (1957).PubMedGoogle Scholar
  27. Wazer, J. R. van: Phosphorus and its compounds, vol. I, p. 813. New York: Interscience Publ., Inc. 1958.Google Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • Y. Ericsson
    • 1
    • 2
  1. 1.Laboratory of Oral BiochemistryKarolinska InstitutetStockholmSweden
  2. 2.Department of CariologyKarolinska InstitutetStockholmSweden

Personalised recommendations