Foundations of Physics

, Volume 25, Issue 12, pp 1669–1698 | Cite as

Retrodiction in quantum mechanics, preferred Lorentz frames, and nonlocal measurements

  • O. Cohen
  • B. J. Hiley


We examine, in the context of the Einstein-Podolsky-Rosen-Bohm gedankenexperiment, problems associated with state reduction and with nonlocal influences according to different interpretations of quantum mechanics, when attempts are made to apply these interpretations in the relativistic domain. We begin by considering the significance of retrodiction within four different interpretations of quantum mechanics, and show that three of these interpretations, if applied in a relativistic context, can lead to ambiguities in their description of a process. We consider ways of dealing with these ambiguities, in particular focussing on the “preferred frame” hypothesis. We then re-examine an argument involving nonlocal measurements which claimed that the preferred frame hypothesis is not tenable, and show that this argument does not in fact necessitate a rejection of the preferred frame. We then suggest that, to avoid confusion, the preferred frame could be extended to cover unitary interactions as well as state reductions. We conclude with a brief examination of a proposal that state reduction should take effect across the backward light cone of a measurement event.


Quantum Mechanic Measurement Event State Reduction Light Cone Relativistic Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Aharonov and D. Z. Albert,Phys. Rev. D 21, 3316 (1980).Google Scholar
  2. 2.
    Y. Aharonov and D. Z. Albert,Phys. Rev. D 24, 359 (1981).Google Scholar
  3. 3.
    K. E. Hellwig and K. Kraus,Phys. Rev. D 1, 566 (1970).Google Scholar
  4. 4.
    N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  5. 5.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, London, 1958).Google Scholar
  6. 6.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).Google Scholar
  7. 7.
    D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  8. 8.
    D. Bohm and B. J. Hiley,The Undivided Universe: An Ontological Interpretation of Quantum Mechanics (Routledge, London, 1993).Google Scholar
  9. 9.
    P. R. Holland,The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).Google Scholar
  10. 10.
    For a review, see R. Omnès,Rev. Mod. Phys. 64, 339 (1992).Google Scholar
  11. 11.
    See, for example, M. Gell-Mann, and J. B. Hartle, inProceedings of the 3rd International Symposium on Foundations of Quantum Mechanics in the Light of New Technology, S. Kobayashiet al., eds. (Physical Society of Japan, Tokyo, 1990).Google Scholar
  12. 12.
    R. B. Griffiths,J. Stat. Phys. 36, 219 (1984).Google Scholar
  13. 13.
    See ref 8, Chap. 10.Google Scholar
  14. 14.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935); D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), pp. 611–623.Google Scholar
  15. 15.
    R. B. Griffiths,Am. J. Phys. 55, 11 (1987).Google Scholar
  16. 16.
    R. B. Griffiths,Found. Phys. 23, 1601 (1993).Google Scholar
  17. 17.
    J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  18. 18.
    See, for example, A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  19. 19.
    Y. Aharonov and D. Z. Albert,Phys. Rev. D 29, 228 (1984).Google Scholar
  20. 20.
    I. Prigogine,From Being to Becoming (Freeman, San Francisco, 1980), p. 207.Google Scholar
  21. 21.
    J. P. Vigier, “Nonlocal Quantum Potential Interpretations of Relativistic Action at a Distance in Many-Body Problems,” inOpen Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1985).Google Scholar
  22. 22.
    P. Droz-Vincent,Phys. Rev. D 19, 702 (1979).Google Scholar
  23. 23.
    K. R. Popper,Quantum Theory and the Schism in Physics (Hutchinson, London, 1982).Google Scholar
  24. 24.
    A. Valentini,On the Pilot-Wave Theory of Classical, Quantum, and Subquantum Physics, PhD Thesis, International School for Advanced Studies, Trieste (1992).Google Scholar
  25. 25.
    G. J. Smith and R. Weingard,Found. Phys. 17, 149 (1987).Google Scholar
  26. 26.
    L. D. Landau and R. Peierls,Z. Phys. 69, 56 (1931).Google Scholar
  27. 27.
    Y. Aharonov, D. Z. Albert, and L. Vaidman,Phys. Rev. D 34, 1805 (1986).Google Scholar
  28. 28.
    S. Popescu and L. Vaidman,Phys. Rev. A 49, 4331 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • O. Cohen
    • 1
  • B. J. Hiley
    • 1
  1. 1.Physics Department, Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations